Background: Dental implants act as infrastructure for fixed restoration to look like as a natural tooth. Osseointegration is a biological events and considered as a base for success of dental implant. The aim of this study is to evaluate the bond strength between bone and Ti implant coated with mixture of nano hydroxyapatite-chitosan-collagen compared with Ti implants coated with nano hydroxyapatite implanted in rabbit tibia, after different period of implantation time (two and six weeks) by torque removal test. Material and methods: 36 screws of commercially pure titanium; 8mm in length and 3mm diameter , 18 screws coated with mixture of nano hydroxyapatite-chitosan-collagen and18 screws coated with nano hydroxyapatite by dip coating. Structural characteristics was assessed by scanning electron microscope, and FTIR analysis. The screws were implanted in 18 healthy adult male New Zeeland rabbits each tibia received one screw, right tibia received screw coated with nano hydroxyapatite while left tibia received screw coated nano hydroxyapatite-chitosan-collagen composite. Removal torque test was done by torque meter to determine the highest torque value necessary to remove the implants from tibia bone after different period of time of implantation(2 and 6 weeks). Result: Nano hydroxyapatite-chitosan-collagen composite coating was resulting in higher torque removal value than nano hydroxyapatite coating for two periods of time. Conclusion: Concluded that addition of collagen and chitosan to nano hydroxyapatite was more efficient in rapid bone formation than nano hydroxyapatite only.
Heavy metal ion removal from industrial wastewater treatment systems is still difficult because it contains organic contaminants. In this study, functional composite hydrogels with photo Fenton reaction activity were used to decompose organic contaminants. Fe3O4 Nanoparticle, chitosan (CS), and other materials make up the hydrogel. There are different factors that affected Photo-Fenton activity including (pH, H2O2 conc., temp., and exposure period). Atomic force microscopy was used to examine the morphology of the composite and its average diameter (AFM). After 60 minutes of exposure to UV radiation, CS/ Fe3O4 hydrogel composite had degraded methylene blue (M.B.)
... Show MoreABSTRACT
The controversy is currently revolving around industrial additives, including antioxidants, their negative effects on consumer health and the emergence of various and various diseases, which led scientists and researchers to intensify most studies on natural antioxidants and their synthesis from medicinal plants mentioned in ancient medicine and in divine books as potential antioxidants of increasing importance. Therefore, this study was designed to synthesize silver nitrate particles from plant leaf extracts (Figs, Olives, and Moringa) and study their effect on bacterial inhibition of each of the undesirable Coliform bacteria (E-Coli,
... Show MoreBackground: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the
... Show MoreBackground: Glass ionomer restorations are widely employed in the field of pediatric dentistry. There is a constant demand for a durable restoration that remains functional until exfoliation. This study aimed to measure and compare the effect of a novel coating material (EQUIA Forte Coat) on the microleakage of glass hybrid restoration (EQUIA Forte HT) in primary teeth. Material and method: Thirty cavitated (class-II) primary molars were allocated randomly into two groups based on the coat application; uncoated (control) and coated group (experimental). Cavities were prepared by the use of a ceramic bur (CeraBur) and restored with EQUIA Forte HT with or without applying a protective coat (EQUIA Forte Coat). Samples went through the therm
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the nanoparticles of anatase TiO2 have good cata
... Show MoreIn this study, nano TiO2 was prepared with titanium isopropoxide (TTIP) as a resource to titanium oxide. The catalyst was synthesized using phosphotungstic acid (PTA) and, stearyl trimethyl ammonium bromide (STAB) was used as the structure-directing material. Characterization of the product was done by the X-ray diffraction (XRD), X-ray fluorescent spectroscopy (XRF), nitrogen adsorption/desorption measurements, Atomic Force Microscope (AFM) and Fourier transform infrared (FTIR) spectra, were used to characterize the calcined TiO2 nanoparticles by STAB and PWA. The TiO2 nanomaterials were prepared in three crystalline forms (amorphous, anatase, anatase-rutile). The results showed that the
... Show MoreThe dielectric constant of most polymers is very low; the addition of TiO2 particles into the polymers provides an attractive and promising way to reach a high dielectric constant. Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Four samples were prepared, one of them was polyurethane (PU) and the other were PU with different weight percent (wt %) of TiO2 (0.1, 0.2, 0.3) powder AFM test was used to distinguish the nanoparticles. The result shows that the most shape of these nanoparticles are spherical and the roughness average is 0.798 nm. The dielectric properties were measured for all samples before and after the exposure to the UV radiation. The result illustrates that the
... Show More