ABSTRACT Background:Hydrogen absorption and related degradation in the mechanical properties of Ni-Ti based orthodontic wires has been demonstrated following exposure to fluoride prophylactic agents. This study was designed to investigate the effects of three fluoride containing agents on the load deflection characteristics of heat activated nickel titanium arch wires during unloading phase. Material and method: Eighty specimens of heat activated nickel titanium arch wires were obtained from Ortho Technology Company, half of which had a 0.016 inch round and 0.019x0.025 rectangular. Ten specimens from both wire size were immersed in one of the tested fluoride prophylactic agents (neutral sodium fluoride gel, stannous fluoride gel or phos-flur mouth rinse) or in the controlled medium “normal salineâ€, and incubated at 37ËšC for sixty minutes. A Wp 300 universal material testing machine was modified and used to perform a three point bending test in a water path at 37ËšC ±1ËšC.The statistical difference between the different agents were analyzed using ANOVA and LSD tests. Results: The unloading forces at 0.5, 1.0, and 1.5 mm where significantly reduced especially in neutral sodium fluoride treated specimens. Conclusion: Based on the results founded in th study it might be preferred to use prophylactic agent with the least fluoride ions concentration.It can be concluded that the tested agents have only a limited effect on the load deflection behavior of the heat activated Ni-Ti wires, in a way that they do not have a clinically significant effect on the mechanical behavior of these wires.
S Ali…, Journal of Physical Education, 2019 - Cited by 1
The induced photodegradation of methyl cellulose (MC) films in air was investigated in the absence and presence of aromatic carbonyl compounds(photosenssitizers): 1,4-naphthaquinone (NQ) and benzophenone (BPH) by accelerated weathering tester. The addition of (0.01 wt %) of low molecular weight aromatic carbonyl compounds to cellulose derivatives films(25µm in thickness) enhanced the photodegradation of the polymer films.The photodegradation rate was measured by the increase in carbonyl absorbance. Decreases in solution viscosity and reduction of molecular weight were also observed in the irradiated samples. Changes in the number-average chain scission, the degree of deterioration and in the quantum yield of chain scission values are als
... Show MoreA polycrystalline PbxS1-x alloys with various Pb content ( 0.54 and 0.55) has been prepared successfully. The structure and composition of alloys are determined by X-ray diffraction (XRD), atomic absorption spectroscopy (AAS) and X-ray fluorescence (XRF) respectively. The X-ray diffraction results shows that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (200) and (111), the grain size varies between 20 and 82 nm. From AAS and XRF result, the concentrations of Pb content for these alloys were determined. The results show high accuracy and very close to the theoretical values. A photoconductive detector as a bulk has been fabricated by taking pieces of prepared alloys and polished chemic
... Show MoreCerebral palsy "is one of the diseases that afflict children, and it is a term given to the condition of a child who is exposed to a normal brain injury by accident due to its inability to grow or damage to the cells of the areas responsible for movement and knowledge of strength and balance during the stage of normal development." (116: 1999: 10) Cerebral palsy causes disruption in movement and posture due to damage to brain cells in areas that control and coordinate muscle tone, reflexes, strength, and movement. The degree and location of brain damage varies greatly between people with paralysis, as well as the severity of disability and symptoms, as they fall into severe to very simple, and cerebral palsy is one of the diseases that caus
... Show MoreCdS films were prepared by thermal evaporation technique at thickness 1 µm on glass substrates and these films were doped with indium (3%) by thermal diffusion method. The electrical properties of these have been investigated in the range of diffusion temperature (473-623 K)> Activation energy is increased with diffusion temperature unless at 623 K activation energy had been decreased. Hall effect results have shown that all the films n-type except at 573 and 623 K and with increase diffusion temperature both of concentration and mobility carriers were increased.
I mpact strength for Epoxy/Polyurethane, Blends and their composites with two
layers of Glass fibers (0-90) are calculated.
The impact strength of the blends and composites decrease with increasing weight
by weisht percentage of polyurethane . This result is attributed to the high elasticity
of PU , and to the immiscibility between the polymer blends as well as the fiber
delaminates