ABSTRACT Background: Piezosurgery device is a system developed recently to overcome the limitation of the traditional surgical technique in implant site preparation, which use the principle of ultrasonic microvibrations to create precise & selective cut in bone in harmony with the surrounding tissues. The aim of this study was to evaluate the outcomes of implants inserted by ultrasonic implant site preparation protocol (UISP) using piezosurgery device, regarding the survival rate, stability and other related factors, at 16 weeks postoperative follow up period. Materials and Methods: A total of (24) patients, (6) males and (18) females, aged between (19-51) years old, contributed in this study receiving a total of (42) implants, all of these implants bed were prepared by means of special tips mounted in piezosurgery device. For each patient thorough clinical and radiographical preoperative assessment was applied. Implant stability quotient (ISQ) values were measured at baseline, 8 weeks and at 16 weeks. Postoperative clinical and radiographic evaluation was applied for each patient for 16 weeks postoperatively. Results: (24) patients received (42) implants accomplished the follow-up period, After 16 weeks all implants (42) were osseointegrated and the overall implants survival rate was 100% with no failure and no complication was observed. The mean ISQ value at baseline was (74.32±6.42), the mean ISQ value at 8 weeks was (72.62±9.05) and at 16 weeks the mean ISQ (±SD) value was (76.68±7.35) the changes in the mean stability during the healing period showed significant increase in the implant stability (P≤0.05). At the 16th week the number of implants that achieved ISQ≥70 was 35 (83.3%), and 7 implants attained ISQ> 70 (16.7%). Conclusions: high and significant survival rate, significant secondary stability, early positive shifting of the mean ISQ value, no remarkable complications in implants inserted by ultrasonic implant site preparation indicated that piezosurgery is a reliable alternative and safe method used in dental implant osteotomy.
Chronic myeloid leukemia (CML), is one of the myeloproliferative disorders with a characteristic cytogenetic abnormality resulting in the BCR-ABL fusion gene. Imatinib Mesylate is an effective agent for treating patients in all stages of CML. According to the annual Iraqi cancer registry 2019, the total number of chronic myeloproliferative disorders was 338. The percentage and incidence rates were 0.94% and 0.86%, respectively, with a higher incidence rate in males than females (1.12 in males and 0.60 in females). In this registry, no details about CML, so this study aimed to estimate the number of CML patients who attended the national center of hematology from 2005 until 2020 and investigate their epidemiological and clinic-pathol
... Show MoreThe isolates of Staphylococcus aureus were isolated from patients with various infections in hospitals, the isolates were identified and accurately diagnosed by phenotypic examination and biochemical tests, as well Vitek-2, and then genetic detection and diagnosis of many of the pathogenic factors associated with Staphylococcus aureus using conventional polymerase chain reaction (PCR) and testing for association by antibiotic resistance and production of some toxins by Staphylococcus aureus. After performing analysis of statistical, it was set up that the correlation coefficient of the PCR technique using virulence genes, sensitivity test to antibiotics and other virulence factors were significant at p < 0.05, but was insignificant with the
... Show MoreAbstract : Tin oxide SnO2 films were prepared by atmospheric chemical vapor deposition (APCVD) technique. Our study focus on prepare SnO2 films by using capillary tube as deposition nozzle and the effect of these tubes on the structural properties and optical properties of the prepared samples. X-ray diffraction (XRD) was employed to find the crystallite size. (XRD) studies show that the structure of a thin films changes from polycrystalline to amorphous by increasing the number of capillary tubes used in sample preparation. Maximum transmission can be measured is (95%) at three capillary tube. (AFM) where use to analyze the morphology of the tin oxides surface. Roughness and average grain size for different number of capillary tubes have b
... Show MorePMMA/TiO2 homogeneous thin films were deposited by using plasma jet system under normal atmospheric pressure and room temperature. PMMA/TiO2 nanocomposite thin film synthesized by plasma polymerization. Titanium oxide was mixed with Methyl Methacrylate Monomer (MMA) with specific weight ratios (1, 3 and 5 grams of TiO2 per 100 ml of MMA). Optical properties of PMMA/TiO2 nanocomposite thin films were characterized by UV-Visible absorption spectra using a double beam UV-Vis-NIR Spectrophotometer. The thin films surface morphological analysis is carried out by employing SEM. The structure analysis are achieved by X-ray diffraction. UV-Visible absorption spectra shows that the increasing the concentration of titanium oxide added to the polym
... Show MoreThe electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.
Cr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
TiO2 thin films have been deposited at different concentration of
CdO of (x= 0.0, 0.05, 0.1, 0.15 and 0.2) Wt. % onto glass substrates
by pulsed laser deposition technique (PLD) using Nd-YAG laser
with λ=1064nm, energy=800mJ and number of shots=500. The
thickness of the film was 200nm. The films were annealed to
different annealing (423 and 523) k. The effect of annealing
temperatures and concentration of CdO on the structural and
photoluminescence (PL) properties were investigated. X-ray
diffraction (XRD) results reveals that the deposited TiO2(1-x)CdOx
thin films were polycrystalline with tetragonal structure and many
peaks were appeared at (110), (101), (111) and (211) planes with
preferred orientatio
In This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show More