Preferred Language
Articles
/
jbcd-1745
Computer Assisted Immunohistochemical Score Prediction Via Simplified Image Acquisition Technique
...Show More Authors

Background: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed to predict human visual scoring results with stepwise multiple regression analysis. Results: the overall prediction of epithelial score depicted as r square value was 0.26 (p<0.001) which was obviously higher than that of stromal score (0.10; p<0.01). Epithelial and stromal MMP-2 score prediction was generally higher than that of MMP-9. Collectively, ameloblastomas had a more efficient score prediction compared to basal cell carcinomas. Conclusion: there is a considerable variability in the prediction capacity of the technique with respect to different antibodies, different tumors and cellular versus stromal score.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Wed Dec 08 2021
Journal Name
J. Inf. Hiding Multim. Signal Process.
Predication of Most Significant Features in Medical Image by Utilized CNN and Heatmap.
...Show More Authors

The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co

... Show More
View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Sun Dec 09 2018
Journal Name
Journal Of Education In Black Sea Region
Discriminatory and Racist Discourse in American TV Channels: The Image of Arab Immigrants
...Show More Authors

The present study examines critically the discursive representation of Arab immigrants in selected American news channels. To achieve the aim of this study, twenty news subtitles have been exacted from ABC and NBC channels. The selected news subtitles have been analyzed within van Dijk’s (2000) critical discourse analysis framework. Ten discourse categories have been examined to uncover the image of Arab immigrants in the American news channels. The image of Arab immigrants has been examined in terms of five ideological assumptions including "us vs. them", "ingroup vs. outgroup", "victims vs. agents", "positive self-presentation vs. negative other-presentation", and "threat vs. non-threat". Analysis of data reveals that Arab immig

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Mar 13 2021
Journal Name
Al-nahrain Journal Of Science
Hiding Multi Short Audio Signals in Color Image by using Fast Fourier Transform
...Show More Authors

Many purposes require communicating audio files between the users using different applications of social media. The security level of these applications is limited; at the same time many audio files are secured and must be accessed by authorized persons only, while, most present works attempt to hide single audio file in certain cover media. In this paper, a new approach of hiding three audio signals with unequal sizes in single color digital image has been proposed using the frequencies transform of this image. In the proposed approach, the Fast Fourier Transform was adopted where each audio signal is embedded in specific region with high frequencies in the frequency spectrum of the cover image to sa

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Sun Nov 19 2017
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Image Compression based on Fixed Predictor Multiresolution Thresholding of Linear Polynomial Nearlossless Techniques
...Show More Authors

Image compression is a serious issue in computer storage and transmission,  that simply makes efficient use of redundancy embedded within an image itself; in addition, it may exploit human vision or perception limitations to reduce the imperceivable information Polynomial coding is a modern image compression technique based on modelling concept to remove the spatial redundancy embedded within the image effectively that composed of two parts, the  mathematical model and the residual. In this paper, two stages proposed technqies adopted, that starts by utilizing the lossy predictor model along with multiresolution base and thresholding techniques corresponding to first stage. Latter by incorporating the near lossless com

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (6)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Mar 15 2020
Journal Name
Al-academy
The Image of Woman by the Artist Jaber Alwan: احلام عبد الستار شنين
...Show More Authors

The woman represents an existential dualism with the man along history. This existence has been manifested through the history of Art starting from the arts of the old civilizations until modernism. It must be said that the history of Art refers to her presence as an extension for this history in the oriental arts, and the Arab countries including Iraq.  The woman has varying outputs in terms of the content of her presence and the style of presentation. In her characterizations: maternity, fertility, femininity and others. The Iraqi artists adopted these fields among them the artist Jaber Alwan who formulated his style of presentation and its units depending on the feminine presence and his experience in her formal and stylistic fie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 26 2018
Journal Name
Communications In Computer And Information Science
A New RGB Image Encryption Based on DNA Encoding and Multi-chaotic Maps
...Show More Authors

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 11 2018
Journal Name
Iraqi Journal Of Physics
Estimation of kidney tumor volume in CT images using medical image segmentation techniques
...Show More Authors

Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentati

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 09 2024
Journal Name
Engineering, Technology &amp; Applied Science Research
Improving Pre-trained CNN-LSTM Models for Image Captioning with Hyper-Parameter Optimization
...Show More Authors

The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Crossref