Background: techniques of image analysis have been used extensively to minimize interobserver variation of immunohistochemical scoring, yet; image acquisition procedures are often demanding, expensive and laborious. This study aims to assess the validity of image analysis to predict human observer’s score with a simplified image acquisition technique. Materials and methods: formalin fixed- paraffin embedded tissue sections for ameloblastomas and basal cell carcinomas were immunohistochemically stained with monoclonal antibodies to MMP-2 and MMP-9. The extent of antibody positivity was quantified using Imagej® based application on low power photomicrographs obtained with a conventional camera. Results of the software were employed to predict human visual scoring results with stepwise multiple regression analysis. Results: the overall prediction of epithelial score depicted as r square value was 0.26 (p<0.001) which was obviously higher than that of stromal score (0.10; p<0.01). Epithelial and stromal MMP-2 score prediction was generally higher than that of MMP-9. Collectively, ameloblastomas had a more efficient score prediction compared to basal cell carcinomas. Conclusion: there is a considerable variability in the prediction capacity of the technique with respect to different antibodies, different tumors and cellular versus stromal score.
This study was conducted in College of Science \ Computer Science Department \ University of Baghdad to compare between automatic sorting and manual sorting, which is more efficient and accurate, as well as the use of artificial intelligence in automated sorting, which included artificial neural network, image processing, study of external characteristics, defects and impurities and physical characteristics; grading and sorting speed, and fruits weigh. the results shown value of impurities and defects. the highest value of the regression is 0.40 and the error-approximation algorithm has recorded the value 06-1 and weight fruits fruit recorded the highest value and was 138.20 g, Gradin
Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal ima
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
Information security is a crucial factor when communicating sensitive information between two parties. Steganography is one of the most techniques used for this purpose. This paper aims to enhance the capacity and robustness of hiding information by compressing image data to a small size while maintaining high quality so that the secret information remains invisible and only the sender and recipient can recognize the transmission. Three techniques are employed to conceal color and gray images, the Wavelet Color Process Technique (WCPT), Wavelet Gray Process Technique (WGPT), and Hybrid Gray Process Technique (HGPT). A comparison between the first and second techniques according to quality metrics, Root-Mean-Square Error (RMSE), Compression-
... Show MoreImage segmentation can be defined as a cutting or segmenting process of the digital image into many useful points which are called segmentation, that includes image elements contribute with certain attributes different form Pixel that constitute other parts. Two phases were followed in image processing by the researcher in this paper. At the beginning, pre-processing image on images was made before the segmentation process through statistical confidence intervals that can be used for estimate of unknown remarks suggested by Acho & Buenestado in 2018. Then, the second phase includes image segmentation process by using "Bernsen's Thresholding Technique" in the first phase. The researcher drew a conclusion that in case of utilizing
... Show MoreThe study aims at investigating the effectiveness of the Virtual Library Technology, in developing the achievement of the English Language Skills in the Center of Development and Continuous Education, in comparison with the individual learning via personal computer to investigate the students' attitude towards the use of both approaches. The population of the study includes the participants in the English Language course arranged in the Center. The sample includes 60 students who were randomly chosen from the whole population (participants in English Courses for the year 2009-2010). The sample is randomly chosen and divided into two experimental groups. The first group has learned through classroom technology; while the other group has l
... Show More