Background: Periodontal diseases (PD) are common chronic inflammatory diseases caused by pathogenic microorganisms colonizing the gingival area and inducing local and systemic elevations of pro-inflammatory cytokines resulting in tissue destruction by a destructive inflammatory process. Stress was considered as one of the important risk factors that cause many inflammatory diseases including PD. The purpose of this study wasto determines and compares clinical periodontal parameters (PLI, GI and BOP), stress level and salivary IL-1? level among dental students before, during and after mid-year exam, also to find the correlation among stress, IL-1? and clinical periodontal parameters. Materials and methods: The sample was consisted of 24 dental students; 12 male and 12 female aged (21-23) years, theywere examined in this follow up study at three main periods; first period at least one month before mid-year exam (Period I), second period during mid-year exam (Period II) and third period at least one month after mid-year exam (Period III). DASS-21 was used to measure stress level in all periods. Saliva samples were collected to determine the salivary IL-1? level by ELISA. Clinical periodontal parameters were recorded at four sites per tooth. Results: The means of all clinical periodontal parameters were higher in the period II than in the periods I and III with highly significant differencesat (P ? 0.01). As well as, the means concentrations of salivary IL-1? were higher in the period II than in the periods I and III with highly significant differencesat (P ? 0.01). Also, by using Pearson's Correlation Coefficient, stress shows highly significant strong correlation with IL-1? and clinical periodontal parametersat (P ? 0.01). Conclusions: The results of this study provided strong evidence of association between examination stress and PD, where dental students during mid-year exam have higher levels of stress, clinical periodontal parameters and salivary IL-1? as compared with before and after mid-year exam periods.
This paper describes the problem of online autonomous mobile robot path planning, which is consisted of finding optimal paths or trajectories for an autonomous mobile robot from a starting point to a destination across a flat map of a terrain, represented by a 2-D workspace. An enhanced algorithm for solving the problem of path planning using Bacterial Foraging Optimization algorithm is presented. This nature-inspired metaheuristic algorithm, which imitates the foraging behavior of E-coli bacteria, was used to find the optimal path from a starting point to a target point. The proposed algorithm was demonstrated by simulations in both static and dynamic different environments. A comparative study was evaluated between the developed algori
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreIn this study, the thermal buckling behavior of composite laminate plates cross-ply and angle-ply all edged simply supported subjected to a uniform temperature field is investigated, using a simple trigonometric shear deformation theory. Four unknown variables are involved in the theory, and satisfied the zero traction boundary condition on the surface without using shear correction factors, Hamilton's principle is used to derive equations of motion depending on a Simple Four Variable Plate Theory for cross-ply and angle-ply, and then solved through Navier's double trigonometric sequence, to obtain critical buckling temperature for laminated composite plates. Effect of changing some design parameters such as, ortho
... Show MoreThis work revealed the spherical aromaticity of some inorganic E4 cages and their protonated E4H+ ions (E=N, P, As, Sb, and Bi). For this purpose, we employed several evaluations like (0D-1D) nucleus independent chemical shift (NICS), multidimensional (2D-3D) off-nucleus isotropic shielding σiso(r), and natural bond orbital (NBO) analysis. The magnetic calculations involved gauge-including atomic orbitals (GIAO) with two density functionals B3LYP and WB97XD, and basis sets of Jorge-ATZP, 6-311+G(d,p), and Lanl2DZp. The Jorge-ATZP basis set showed the best consistency. Our findings disclosed non-classical aromatic characters in the above molecules, which decreased from N to Bi cages. Also, the results showed more aromaticity in E4 than E4H+
... Show MoreThe distribution of chilled water flow rate in terminal unit is a major factor used to evaluate the performance of central air conditioning unit. In this work, a theoretical chilled water distribution in the terminal units has been studied to predict the optimum heat performance of terminal unit. The central Air-conditioning unit model consists of cooling/ heating coil (three units), chilled water source (chiller), three-way and two-way valve with bypass, piping network, and pump. The term of optimization in terminal unit ingredient has two categories, the first is the uniform of the water flow rate representing in statically permanents standard deviation (minimum value) and the second category is the maximum heat transfer rate fro
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
The human intellect and his ability to complex thinking is a characteristic that Allah has given him above all his creatures. Islam came to encourage the utilization of the mind by thought, contemplation and consideration of the kingdom of Allah, His signs and religion, and He gave us a set of legislation that preserves the mind and protects it from falling into error or deviation.
This research deals with one of the most important components of civilizations in general and Islamic civilization in particular, which is thinking and what is related to it. It is an essential and influential component in man's dealing with life around him and the for
... Show MoreThis work provides an analysis of the thermal flow and behavior of the (load-free) refrigerator compartment. The main goal was to compare the thermal behavior inside the refrigerator cavity to the freezer door (home refrigerator) effect and install a fan on the freezer door while neglecting the heat transmitted by thermal radiation. Moreover, the velocity distribution, temperature, and velocity path lines are theoretically studied. This was observed without affecting the shelves inside the cabinet and the egg and butter places on the refrigerator door as they were removed and the aluminum door replaced with a glass door. This study aims to expand our knowledge about the temperature and flow fields of this refrigerator mo
... Show MoreThe paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show More