Background: One of the most common problem associated with the used of soft denture lining material is microorganisms and fungal growth especially Candida albicans, which can result in chronic mucosal inflammation. The aim of this study was to evaluate the influence of chlorhexidine diacetate (CDA) salt Incorporation into soft denture lining material on antifungal activity; against Candida albicans, and the amount of chlorhexidine di-acetate salt leached out of soft liner/CDA composite. Furthermore, evaluate shear bond strength and hardness after CDA addition to soft liner Materials and methods: chlorhexidine diacetate salt was added to soft denture lining material at four different concentrations (0.05%, 0.1% and 0.2% by weight). Four hundred and fifty specimens were made and divided into four groups according to the test to be performed. Disk diffusion test was used to evaluate the antifungal activity of the soft liner/CDA composite after four different periods of incubation in artificial saliva. UV spectroscopy was used to evaluate the amount of accumulative and periodic CDA released in artificial saliva after 2 days, 2 weeks and 4 weeks incubation in artificial saliva. The shear bond strength and shore A hardness was measured after 2 and 4 weeks incubation in artificial saliva and the results were statistically analyzed. Results: All experimental groups showed a highly significant increase in diameter of inhibition zone around the test specimen in compare with control group. The release of Chlorhexidine showed to be dose dependent. The shore A hardness a highly significant increase with the addition of CDA and as for shear bonding strength, the addition of CDA at 0.5% and 1.5% percentage resulted in a highly significant decrease in bond strength, while 2.5% and 3.5% percentage showed non-significant differences in compare with control. Conclusion: soft denture lining material with antifungal properties was the result of CDA salt incorporation which indicate that chlorhexidine was released in affected concentration from soft liner/CDA composite. This incorporation resulted in Hardness increase and did not affect the shear bond strength for 2.5% and 3.5% percentage. Keywords: Soft denture liners, antifungal activity, chlorhexidine diacetate salt.
Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti
... Show MoreDensity Functional Theory (DFT) with B3LYP hybrid exchange-correlation functional and 3-21G basis set and semi-empirical methods (PM3) were used to calculate the energies (total energy, binding energy (Eb), molecular orbital energy (EHOMO-ELUMO), heat of formation (?Hf)) and vibrational spectra for some Tellurium (IV) compounds containing cycloctadienyl group which can use as ligands with some transition metals or essential metals of periodic table at optimized geometrical structures.
ABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue
... Show MoreObjective(s): Ramadan is the Holy month of the Muslims, where they are required to abstain from food and drinks
from dawn till the beginning of night. This study was conducted in Ramadan to investigate the effect of fasting on
hematological incidences, lipid profile, renal and liver function tests among healthy adult males.
Methodology: The present study was carried out in Ramadan – 1431 of Higira (August-September 2010). The study
sample was 56 healthy adult males. Five samples of blood were taken at five intervals (Before, at day 1, 15, 28 and
after Ramadan). Estimation was done for hematological markers, (hemoglobin, white blood cells count, platelet
count); renal function tests (blood urea, serum uric acid, serum
The present research investigates joints welding of 304L austenitic stainless steel using metal inert gas (MIG) welding method. The research explores the effect of process parameters (arc voltage, wire feed rate, and electrode wire diameter) on the mechanical properties of stainless steel. The above variables are varied respectively with 18.5, 19, 19.5 V, 116, 127, 137 mm/s, and 0.8, 1, 1.2 mm, with E308L as a filler electrode. The design matrix of the experiments was determined using the design of experiment (DOE) program Minitab 17 based on the levels of input elements used. The Taguchi orthogonal matrix methodology (Taguchi) technique was used to develop some empirical analysis for the maximum tensile strength and proper surface
... Show More