Background: Chronic periodontitis defined as “an infectious inflammatory disease within supporting tissues of the teeth, progressive attachment loss and bone loss". Aggressive periodontitis is rare which in most cases manifest themselves clinically during youth. It characterized by rapid rate of disease progression .Pro-inflammatory chemokines organized inflammatory responses. Granulocyte chemotactic protein 2 is involved in neutrophil gathering and movement. The purpose of the study is to detect serum of Granulocyte Chemotactic Protein 2 and correlate to periodontal condition in patients with chronic periodontitis, Aggressive periodontitis and Healthy Control subjects and measurement the count of neutrophils for the studied groups. Subjects and methods: Eighty four male and female were enrolled in this study .They were divided into three groups (18) patients with Aggressive periodontitis with age range (20-45) years, (33) chronic periodontitis patients and (33) Healthy control with an age range (30-50). Clinical periodontal parameters were recorded for each group. The concentration of granulocyte chemotactic protein- 2 in serum was quantified by a high-sensitivity enzyme linked immunosorbent assay. Blood neutrophils count were detect for five subjects from each group using light microscope Result: ANOVA analysis revealed high significant differences in Granulocyte chemotactic protein 2 means between aggressive, chronic and controls. Neutrophils count in aggressive periodontitis is higher than chronic and controls .No significant difference in neutrophils count between aggressive and chronic periodontitis, while significant difference when correlate them with controls Conclusion The concentration of granulocyte chemotactic protein 2 increased with the increase in severity of periodontitis. Higher neutrophils count was found in aggressive periodontitis than chronic and controls. As higher granulocyte chemotactic protein 2 that chemoattract more neutrophils recruitment to the site of inflammation
Several Intrusion Detection Systems (IDS) have been proposed in the current decade. Most datasets which associate with intrusion detection dataset suffer from an imbalance class problem. This problem limits the performance of classifier for minority classes. This paper has presented a novel class imbalance processing technology for large scale multiclass dataset, referred to as BMCD. Our algorithm is based on adapting the Synthetic Minority Over-Sampling Technique (SMOTE) with multiclass dataset to improve the detection rate of minority classes while ensuring efficiency. In this work we have been combined five individual CICIDS2017 dataset to create one multiclass dataset which contains several types of attacks. To prove the eff
... Show MoreDeepfake is a type of artificial intelligence used to create convincing images, audio, and video hoaxes and it concerns celebrities and everyone because they are easy to manufacture. Deepfake are hard to recognize by people and current approaches, especially high-quality ones. As a defense against Deepfake techniques, various methods to detect Deepfake in images have been suggested. Most of them had limitations, like only working with one face in an image. The face has to be facing forward, with both eyes and the mouth open, depending on what part of the face they worked on. Other than that, a few focus on the impact of pre-processing steps on the detection accuracy of the models. This paper introduces a framework design focused on this asp
... Show MoreDetermining the face of wearing a mask from not wearing a mask from visual data such as video and still, images have been a fascinating research topic in recent decades due to the spread of the Corona pandemic, which has changed the features of the entire world and forced people to wear a mask as a way to prevent the pandemic that has calmed the entire world, and it has played an important role. Intelligent development based on artificial intelligence and computers has a very important role in the issue of safety from the pandemic, as the Topic of face recognition and identifying people who wear the mask or not in the introduction and deep education was the most prominent in this topic. Using deep learning techniques and the YOLO (”You on
... Show MoreSignificant advances in the automated glaucoma detection techniques have been made through the employment of the Machine Learning (ML) and Deep Learning (DL) methods, an overview of which will be provided in this paper. What sets the current literature review apart is its exclusive focus on the aforementioned techniques for glaucoma detection using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines for filtering the selected papers. To achieve this, an advanced search was conducted in the Scopus database, specifically looking for research papers published in 2023, with the keywords "glaucoma detection", "machine learning", and "deep learning". Among the multiple found papers, the ones focusing
... Show MoreInsulin like growth factor-1 has metabolic and growth-related roles all over the body and is strongly associated and regulated by growth hormone. It is produced by almost any type of tissue, especially the liver. The study aimed to measure insulin like growth factor in growth hormone deficient patients and find its relation with other studied parameters. The Subjects in the study were 180 studied in the National Diabetic Center for Treatment and Research/Al-Mustansiriya University in Baghdad/Iraq for the period from November 2021 to April 2022. Blood was drawn and investigated for the levels of IGF-1, IGFBP-3, LH, and FSH. Also testosterone and statistical analysis was carried out to find the potential correlations. The results relived t
... Show MoreIraq suffers from serious pollution with harmful particles that have important direct and indirect effects on human activities and human health. In this research, a system for detecting pollutants in the air was designed and manufactured using infrared laser technology. This system was used to detect the presence of pollutants in the dust storms that swept the city of Baghdad which could have a negative impact on human health and living organisms.
The designed detection system based on the use of infrared laser (IR) with a wavelength of 1064 nm was used for the purposes of detecting pollutants based on the scattering of the laser beam from these pollutants. The system was aligned to obtain the best signal for the scattered rays, w
... Show More