Background: Sialosis described as a specific consequence of diabetes. In diabetic sialosis, the increased volume of the glands is due to the infiltration of adipose in the parenchyma. The B-scan ultrasonography is a generally accepted tool for determining parotid gland enlargement. Oral health is, to a greater extent, dependent on quality and quantity of saliva, both of which may be altered in diabetics. This study was established to detect the enlargement of parotid gland in diabetic patient and study the changes in physical properties of saliva and its relation with the salivary gland enlargement. Subjects, Materials and Methods: A cross-sectional study with highly specified criteria with ages ranged (20-65) years, male and female subjects who attending Al-Yarmouk teaching hospital (Al-Yarmouk center for Diabetes). Parotid gland was measured by using B-mode ultrasonography with a high frequency (6-9MHz). Physical properties of saliva were measured namely: flow rate, pH, and viscosity. Results: The statistical analysis showed that: The right-left mean difference in length, width, depth and volume ultrasonography measurements of parotid gland among diabetic study group, revealed non statistically significant difference, similar result was obtained among control group. The effect of Diabetes mellitus is marked on the parotid gland measurements as the disease progresses and the HbA1c increase. Physical properties of saliva give obvious decrease in flow rate and pH in diabetic patient while the viscosity was increased in diabetic rather than normal. Conclusion: This study concludes that there is positive correlation between the progressions of disease and salivary gland measurements. On the other hand, the present article shows that there is negative association between flow rate, pH, and viscosity in comparison with salivary gland measurements
By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreMethylotrophs bacteria are ubiquitous, and they have the ability to consume single carbon (C1) which makes them biological conversion machines. It is the first study to find facultative methylotrophic bacteria in contaminated soils in Iraq. Conventional PCR was employed to amplify MxaF that encodes methanol dehydrogenase enzyme. DNA templates were extracted from bacteria isolated from five contaminated sites in Basra. The gene specific PCR detected Methylorubrum extorquens as the most dominant species in these environments. The ability of M. extorquens to degrade aliphatic hydrocarbons compound was tested at the laboratory. Within 7 days, gas chromatographic (GC) studies of remaining utilize
... Show MoreIn this study, a packed bed was used to remove pathogenic bacteria from synthetic contaminated water. Two types of packing material substrates, sand and zeolite, were used. These substrates were coated with silver nanoparticles (AgNPs), which were prepared by decomposition of Ag ions from AgNO3 solution. The prepared coated packings were characterized using scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The packed column consisted of a PVC cylinder of 2 cm diameter and 20 cm in length. The column was packed with silver nanoparticlecoated substrates (sand or zeolite) at a depth of 10 cm. Four types of bacteria were studied: Escherichia coli, Shigella dysenteriae, Pseudomonas aerugi
... Show MoreNitrogen dioxide NO2 is one of the most dangerous contaminant in the air, its toxic gas that cause disturbing respiratory effects, most of it emitted from industrial sources especially from the stack of power plants and oil refineries. In this study Gaussian equations modelled by Matlab program to state the effect of pollutant NO2 gas on area around Durra refinery, this program also evaluate some elements such as wind and stability and its effect on stacks height. Data used in this study is the amount of fuel oil and fuel gas burn inside refinery at a year 2017. Hourly April month data chosen as a case study because it’s unsteady month. After evaluate emission rate of the all fuel and calculate exit velocity from
... Show MoreA comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leav
... Show MoreWater pollution as a result of contamination with dye-contaminating effluents is a severe issue for water reservoirs, which instigated the study of biodegradation of Reactive Red 195 and Reactive Blue dyes by E. coli and Bacillus sp. The effects of occupation time, solution pH, initial dyes concentrations, biomass loading, and temperature were investigated via batch-system experiments by using the Design of Experiment (DOE) for 2 levels and 5 factors response surface methodology (RSM). The operational conditions used for these factors were optimized using quadratic techniques by reducing the number of experiments. The results revealed that the two types of bacteria had a powerful effect on biodegradable dyes. The regression analysis reveale
... Show MoreThe depth conversion process is a significant task in seismic interpretation to establish the link between the seismic data in the time domain and the drilled wells in the depth domain. To promote the exploration and development of the Subba oilfield, more accurate depth conversion is required. In this paper, three approaches of depth conversions: Models 1, 2, and 3 are applied from the simplest to the most complex on Nahr Umr Reservoir in Suba oilfield. This is to obtain the best approach, giving less mistakes with the actual depth at well locations and good inter/extrapolation between or away from well controls. The results of these approaches, together with the uncertainty analysis provide a reliable velocity model
... Show MoreIn this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.