Background: Polymethylmethacrylate (PMMA) is the most ‎commonly used mâ€aterial in denture construction. This material is ‎far from ideal in fulfilling the‎ mechanical requirements, like low impact and transverse strength and poor thermal conductivity are present in this material. The purpose of this study was to study the effect of addition a composite which include 1%wt silanized silicone dioxide nano fillers (SiO2) and 1wt% oxygen plasma treated polypropylene fiber (PP) on some properties of heat cured acrylic resin denture base material (PMMA). Materials and methods: One hundâ€red (100) prepared specimens were divided into five groups according to the tests, each group consisted of 20 specimens and these were subdivided into two groups (unreinforced heat cured acrylic resin as control group)and reinforced acrylic resin with ( 1%wt Nano SiO2 and 1% wt oxygen plasma treated polypropylene ‎fibers) ‎group. The transverse strength¸ impact ‎strength, indentation hardness (shoreD), surface roughness and water sorption and solubility were investigated. The results were statistically analyzed using descriptive and t-test. Results: The results of this study show that a highly significant increase in impact strength (10.4939 Kj/m2),surface hardness (89.9375) surface roughness (0.9498) and water sorption (0.0171mg/cm2) was observed with the addition of 1%wt silanized (SiO2) nanoparticles and 1%wt oxygen plasma treated polypropylene fibers to (PMMA) , also significant decrease in transverse strength (103.4753 N/mm2), nonsignificant decrease occurred in water solubility which was (0.0005mg/cm2). Conclusion: The incorporation of 1%wt silanized SiO2 nanoparticles and 1%wt oxygen plasma treated polypropylene fiber to heat cure PMMA form a composite improves the impact strength, surface hardness and surface roughness of acrylic resin, at the same time this addition increase the water sorption and decrease water solubility; while significant decrease in transverse strength.
Lately great interests have emerged to find educational alternatives to teach and improve motor skills according to modern educational methods that take into account individual differences and speed in learning for the learner through individual learning that the learner adopts by teaching himself by passing through various educational situations to acquire skills and information in the way he is The learner is the focus of the educational process and among these alternatives the interactive video, the researchers noted through the educational training units at the Model Squash School of the Central Union, and that most of the methods and methods used in learning basic skills take a lot of time in the educational program and do not involve
... Show MoreWe report here an innovative feature of green nanotechnology-focused work showing that mangiferin—a glucose functionalized xanthonoid, found in abundance in mango peels—serves dual roles of chemical reduction and in situ encapsulation, to produce gold nanoparticles with optimum in vivo stability and tumor specific characteristics. The interaction of mangiferin with a Au-198 gold precursor affords MGF-198AuNPs as the beta emissions of Au-198 provide unique advantages for tumor therapy while gamma rays are used for the quantitative estimation of gold within the tumors and various organs. The laminin receptor specificity of mangiferin affords specific accumulation of therapeutic payloads of this new therapeutic agent within prostate tumors
... Show MoreThin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
This paper presents a nonlinear finite element modeling and analysis of steel fiber reinforced concrete (SFRC) deep beams with and without openings in web subjected to two- point loading. In this study, the beams were modeled using ANSYS nonlinear finite element
software. The percentage of steel fiber was varied from 0 to 1.0%.The influence of fiber content in the concrete deep beams has been studied by measuring the deflection of the deep beams at mid- span and marking the cracking patterns, compute the failure loads for each deep beam, and also study the shearing and first principal stresses for the deep beams with and without openings and with different steel fiber ratios. The above study indicates that the location of openings an
This research investigates the pre- and post-cracking resistance of steel fiber-reinforced concrete specimens with Glass Fiber Reinforced Polymer (GFRP) bars subjected to flexural loading. The purpose is to modify the ductility and cracking resistance of GFRP-reinforced beams, which are prone to early cracking and excessive deflections instigated by the low modulus of elasticity of GFRP. Six self-compacting concrete specimens (1500×240×200 mm), incorporating steel fibers of two lengths (25 mm and 40 mm) with varying distribution depths, were tested to assess their structural performance. The results indicate significant enhancements in cracking resistance, stiffness, energy absorption, ductility, and flexural strength. Tested beam
... Show MoreThe experiment was conducted to study the effect of sodium chloride (NaCl) at the concentrations of 0.0, 0.5, 1.0 and 1.5% on the callus cells. The Iraq wheat variety was grown in vitro for the purpose of knowing the effect of salt stress on some indicators and cellular components of callus by using a randomized complete design, at the laboratories of tissue culture propagation date palm unit in the College of Agriculture / University of Kufa during the period 2014-2015. Fresh and dry weight, the rate of absolute growth, percentage of dry matter of callus, content of the callus cells of proline, total soluble carbohydrates, sodium and potassium ions, effectiveness of the enzymes catalase and peroxidase study shock salt proteins in callus we
... Show MoreIn this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa