Background: The marginal seal is essential for sealant success because penetration of bacteria under the sealant might allow caries onset or progression. The aim of the present study was to estimate and compare the microleakage of pit and fissure sealant after various methods of occlusal surface preparation. Materials and methods: Thirty non-carious premolars extracted for orthodontic reasons were equally divided into three groups. In group one, occlusal fissures were opened with round carbide bur, in group two, occlusal surfaces of the teeth were cleaned with a dry pointed bristle brush and samples of group three were cleaned with a slurry of fine flour of pumice in water using rubber cup. Then fissures of all teeth were etched using 35% phosphoric acid gel prior to placement of Conseal F (SDI) light cured sealant, the teeth were thermocycled, then they were immersed in 1% methylene blue for 24hours. Each tooth was sectioned bucco-lingually to detect the microleakage. Results: Different levels of microleakage were observed among various groups, highest level was recorded for brushing group followed by pumice group, while round bur samples showed the least microleakage when compared with other groups. Statistically the difference was not significant between brushing and pumice groups, while it was significant between round bur and other groups Conclusion: Preparation of occlusal surface with round bur was very effective in reduction of microleakage in comparison with the traditional pumice slurry and bristle brush.
Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreBackground: Dental implant surface technologies have been evolving rapidly to enhance a more rapid bone formation on their surface and improve implant therapy.Implant threads should be designed to increase surface contact areathat induced better stability. In addition, implant surface coating with Flaxseed was used to enhance bone formation at the bone-implant interface. Materials and methods: Ninety-six commercially pure titanium (CpTi) screws were implanted in rabbits' tibiae and divided into three groups as dual-threaded group, flaxseed-coated group and control group. All groups were evaluated mechanically, histologically and radiographically after each healing periods (2, 4, 6 and 8) weeks and the resulting data were statistically analy
... Show MoreObjective(s): To determine the impact of instructional intervention program upon psychological health status for
women who undergo chemotherapy after mastectomy
Methodology: The sample consisted of (100) women, (50) considered as study group, and another (50) the control
group. A pre test was done for both groups (study and control), and then the study samples were exposed to an
instructional intervention and three-dimensional post tests and the length of time between each test 21 days in
the Institute and Hospital of Radiation and Nuclear Medicine. The questionnaire composed of three parts, first,
demographic information; include (age, educational level, type of family, occupation, marital status, and adequacy
of mo
AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).
Composite steel-concrete sections have a broad benefit through increasing structural strength as well as minimizing the self-loads. All past researches were concerned with pre-installed shear connectors (PRSC) in the manufacturing of composite sections. A new fabrication technique for steel-concrete-steel composite sections were presented in the current study by the post-installation shear connectors (POSC) passed-through an embedded polymerizing vinyl chloride (PVC) pipes. The performance of normal strength concrete prisms with a specified strength of 32 MPa connected to square steel tubes (SST) was investigated. Six specimens were fabricated in both methodologies, PRSC and POSC were experimentally tested by Push-out test. The spac
... Show More
Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show More