Background: The healing period for bone–implant contact takes 3–6 months or even longer. Application of Escherichia coli-derived recombinant human bone morphogenetic protein-2 (ErhBMP-2) to implant surfaces has been of great interest on osseointegration due to its osteoinductive potential. The objective of this study was to evaluate the effect of ErhBMP-2 on implant stability. Materials and methods: A total of 48 dental implants were inserted in 15 patients. Twenty four implants coated with 0.5 mg/ml ErhBMP-2 (study group). The other 24 implants were uncoated (control group). Each patient was received at least two dental implants at the same session. Both groups were followed with repeated implant stability measurements by means of resonance frequency analysis at different time intervals (at the time of surgery, then at 6th and 12th week postoperatively). Results: there was no obvious statistically significant difference in mean of implant stability quotient ISQ between study and control groups (P > 0.05) at time of surgery, whereas the mean of ISQ values at 6th and at 12th week postoperatively were statistically highly significant in the study group compared to the control group (p < 0.01). Conclusion: The results of this study reveal that coating dental implants with ErhBMP-2 increases stability when compared with uncoated implants.
Despite the G protein-coupled receptors (GPCRs) being the largest family of signalling proteins at the surface of cells, their potential to be targeted in cancer therapy is still under-utilised. This review highlights the contribution of these receptors to the process of oncogenesis and points to some likely challenges that might be encountered in targeting them. GPCR-signalling pathways are often complex and can be tissue-specific. Cancer cells hijack these communication networks to their proliferative advantage. The role of selected GPCRs in the different hallmarks of cancer is examined to highlight the complexity of targeting these receptors for therapeutic benefit. Our
... Show MoreProtein arginine methyltransferases (PRMTs) play important roles in transcription, splicing, DNA damage repair, RNA biology, and cellular metabolism. Thus, PRMTs have been attractive targets for various diseases. In this study, we reported the design and synthesis of a potent pan-inhibitor for PRMTs that tethers a thioadenosine and various substituted guanidino groups through a propyl linker. Compound II757 exhibits a half-maximal inhibition concentration (IC50) value of 5 to 555 nM for eight tested PRMTs, with the highest inhibition for PRMT4 (IC50 = 5 nM). The kinetic study demonstrated that II757 competitively binds at the SAM binding site of PRMT1. Notably, II757 is selective for PRMTs over a panel of other methyltransferases, w
... Show MoreThe Video effect on Youths Value
Background: Cervical lymph nodes are prone to involved by a number of pathologic processes. They are common sites for lymphoma, metastasis, and reactive enlargement in a number of conditions. Aims of the study:-Clinical evaluation of patients with cervical lymphadenopathy. Differentiation between benign and malignant lymph nodes by means of ultra sounds (US) and Correlate the US findings with cytological and/or histopathological findings of cervical lymph nodes. Subjects, Materials and Methods:-The present study was carried out over a period of 6 months and included 81 patients of different age groups presenting with cervical lymphadenopathy. Each patient was examined clinically, then comprehensive sonographic examination of the neck for
... Show MoreNowadays, the field of radionuclide treatment is enjoying an exciting stage and preparing for further growth and progress in the future. For instance, in Asia, the large spread of liver and thyroid diseases has resulted in several new developments/clinical trials using molecular radiotherapy (i.e. targeted radionuclide therapy). Iodine-124 has unique physical properties including long half-life that adding an advantage for pharmacokinetics and radiopharmaceutical analysis. One of its applications in nuclear medicine is in Positron Emission Tomography (PET).
Phase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreIn this research, the performance of a two kind of membrane was examined to recovering the nutrients (protein and lactose) from the whey produced by the soft cheese industry in the General Company for Food Products inAbo-ghraab.Wheyare treated in two stages, the first including press whey into micron filter made of poly vinylidene difluoride (PVDF) standard plate type 800 kilo dalton, The membrane separates the whey to permeate which represent is the main nutrients and to remove the fat and microorganisms.The second stage is to isolate the protein by using ultra filter made of polyethylsulphone(PES)type plate with a measurement of 10,60 kilo dalton and the recovery of lactose in the form of permeate.
The results showed that the percen
3\URO\VLVKDVEHHQFRQVLGHUHGDPHWKRGIRUUHFRYHULQJWKHSRZHUIURPFRPELQHGPLFURDOJDELRPDVVKHUH QH[WH[HFXWLQJKHDWSUREHRIRULQYROYLQJVRXQGZDYHVZLWKDIUHTXHQF\DERYHWKHXSSHUOLPLWRIKXPDQKHDULQJDVD SUHWUHDWPHQWWRLQFUHDVHWKHELRFUXGH\LHOG3\URO\VLVRIPL[HGPLFURDOJDHZDVFDUULHGRXWLQDEDWFKUHDFWRUPDGH XS RI VWHHO DW DWHPSHUDWXUH UDQJH &R QLWURJHQ JDV ZDV XVHG DV VZHHS JDV IRU PDLQWDLQLQJ R[\JHQ IUHH DWPRVSKHUHLQWKHS\URO\VLVWKHUHVXOWVVKRZWKDWWKHXVLQJXOWUDVRQLFSUREHIRUERWKIUHTXHQF\ .+]LQFUHDVH WKHELRFUXGH\LHOGIURPWRDQGUHVSHFWLYHO\DW&R WKHWKHUPDOGHJUDGDWLRQWHPSHUDWXUHRI PLFURDOJDHDUH VWXGLHG XVLQJ7*$DOVRWKH UHVXOWV VKRZWKDWWKHDVKFRQWHQWDIWHUDSSO\LQJ XOWUDVRQLF VRXQGDVD SUHWUHDWPHQWIRUERWKIUHTXHQF\ .+]ZHUHUHGXFHGIURPWR
... Show More