Background: Because of its clinical and surgical importance and lack of precise information about this rare and important anatomical landmark, this study was designed to detect the presence, configurations and length of Mandibular Retromolar Canal (MRMC) with aid of CBCT visualization. Materials and methods: In this retrospective study the data was obtained from Specialist Health Center in AL-Sadder city in Baghdad for (100) patients with 200 inferior dental canal, all of them referred to CBCT scan (Kodak 9500, French origin). The scanning was done with tube voltage 90 kVp, tube current with 10mA and exposure time was 10 s., the field of view was measured with 5cm x 3.7cmwith 0.03mm voxel size Results: In the present study the prevalence of MRMC was 12% , 2 patients have ( two ) bilateral MRMC and 10 patients have a unilateral canal, there was asignificant difference between two sides (left and right), the right side was 64.29% and left 35.71%, regarding to gender also there was a significant difference , female 33.3% and male 66.7%. In this study there were three types of MRMC and there was a significant difference between them, the mean length (hight) was 11.78 mm and mean horizontaldistance from canal to distal surface of the second molar was 18.5 mm. Conclusions: MRMC also detectedin this study within the global percentage and configurations and should be taken with consideration in oral surgical procedures and radiological interpretations
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
In this paper, experimental study has been done for temperature distribution in space conditioned with Ventilation Hollow Core Slab (TermoDeck) system. The experiments were carried out on a model room with dimensions of (1m 1.2m 1m) that was built according to a suitable scale factor of (1/4). The temperature distributions was measured by 59 thermocouples fixed in several locations in the test room. Two cases were considered in this work, the first one during unoccupied period at night time (without external load) and the other at day period with external load of 800W/m2 according to solar heat gain calculations during summer season in Iraq. All results confirm the use of TermoDeck system for ventilation and cooling/heat
... Show MoreIn this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show MoreA two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was
... Show MoreVariable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreCost estimation is considered one of the important tasks in the construction projects management. The precise estimation of the construction cost affect on the success and quality of a construction project. Elemental estimation is considered a very important stage to the project team because it represents one of the key project elements. It helps in formulating the basis to strategies and execution plans for construction and engineering. Elemental estimation, which in the early stage, estimates the construction costs depending on . minimum details of the project so that it gives an indication for the initial design stage of a project. This paper studies the factors that affect the elemental cost estimation as well as the rela
... Show More