Preferred Language
Articles
/
jbcd-1429
Histological Evaluation of Effect of beta-Tricalcium Phosphate on Bone healing in Alloxan-Induced diabetes
...Show More Authors

Background: Improved glucose level control with insulin injections have allowed for the diabetic population to live longer and healthier lives. Unfortunately diabetes remains a worldwide epidemic disease with multiple health implications. Specifically, its effects upon fracture healing are compromised in diabetics with as high as 87% recovery delay relative to “healthy” counterparts. Current medical treatments for bone injuries have been largely focused on replacing the lost bone with allogenic or autogenous bone grafts, beta-tricalcium phosphate (β -TCP), a ceramic alloplast, has interconnected system of micropores, has been widely used as a biologically safe osteoconductive bone substitute. The aim of this study was histological evaluation of effect of topical application of β –TCP on bone healing of diabetic rabbit. Materials and methods: Sixty New Zealand rabbits used in this study were divided into three groups for four healing intervals the experimental groups were: 1-Control group(C).2-Diabetic rabbits received insulin treatment regarded as controlled diabetes mellitus (CDM)group.3-Diabetic rabbits did not receive any treatment regarded as uncontrolled diabetes mellitus (UDM)group. All animals subjected to surgical operation in right tibia, creating bone defect 3mm in depth and 4mm in diameter filled with β-Tricalcium Phosphate. Animals' scarifications were done in 5 day, 2, 4 and 6 weeks durations. Routine processing and sectioning technique was performed for histological evaluation. Results: Histological findings indicated that bone defects in control(C) and controlled diabetes mellitus (CDM) groups showed early bone formation, mineralization and maturation in comparison to healing of uncontrolled diabetes mellitus (UDM) group. Histomorphometric analysis for all bone parameters examined in this study, showed variation in significance among all groups in different durations. Conclusion: The study revealed that application of β-TCP was more effective in enhancement of bone regeneration and in acceleration of bone healing process in controlled diabetes as compared to the uncontrolled one.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 31 2023
Journal Name
Sumer Journal For Pure Science
COVID-19Disease Diagnosis using Artificial Intelligence based on Gene Expression: A Review
...Show More Authors

Publication Date
Mon Feb 01 2016
Journal Name
Ieee Transactions On Circuits And Systems Ii: Express Briefs
Adaptive Multibit Crosstalk-Aware Error Control Coding Scheme for On-Chip Communication
...Show More Authors

The presence of different noise sources and continuous increase in crosstalk in the deep submicrometer technology raised concerns for on-chip communication reliability, leading to the incorporation of crosstalk avoidance techniques in error control coding schemes. This brief proposes joint crosstalk avoidance with adaptive error control scheme to reduce the power consumption by providing appropriate communication resiliency based on runtime noise level. By switching between shielding and duplication as the crosstalk avoidance technique and between hybrid automatic repeat request and forward error correction as the error control policies, three modes of error resiliencies are provided. The results show that, in reduced mode, the scheme achie

... Show More
View Publication
Scopus (11)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Mon Apr 15 2024
Journal Name
Journal Of Engineering Science And Technology
Text Steganography Based on Arabic Characters Linguistic Features and Word Shifting Method
...Show More Authors

In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn

... Show More
Publication Date
Wed Jun 01 2022
Journal Name
Political Sciences Journal
The Kurdistan Workers Party (PKK) and its Impact on Iraqi National Security
...Show More Authors

The Turkish Kurdistan Workers Party (PKK) is one of the most influential elements in the Iraqi national security since 2014. It has a new and effective role in the Iraqi political arena, as a result of participating in combat operations against ISIS in Nineveh Governorate, which prompted several minorities within the province to sympathize with its presence and its role in particular in Sinjar  after ISIS committed the most brutal crimes against the Aizidi minority, Turkey took advantage of the security conditions that Iraq went through after the entry of ISIS into the country to expand its influence in the north, using the pretext of the PKK and the previous agreement between the two countries on border protection. Also, the continued

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Industrial Research (ijoir)
Biofuel Production and Its Impact on Global Food Security: A Review Article
...Show More Authors

The aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive convers

... Show More
Preview PDF
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Aug 31 2015
Journal Name
Journal Of Theoretical And Applied Information Technology
EXAM QUESTIONS CLASSIFICATION BASED ON BLOOM’S TAXONOMY COGNITIVE LEVEL USING CLASSIFIERS COMBINATION
...Show More Authors

Preview PDF
Scopus (74)
Scopus
Publication Date
Sat Apr 01 2023
Journal Name
Journal Of Engineering
Proposed Face Detection Classification Model Based on Amazon Web Services Cloud (AWS)
...Show More Authors

One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref