Background: Lymphomas are group of diseases caused by malignant lymphocytes that accumulate in lymph nodes and caused the characteristics lymphadenopathy. Occasionally, they may spill over into blood or infiltrate organs outside the lymphoid tissue. The major subdivision of lymphomas is into Hodgkin lymphoma and non–Hodgkin lymphoma and this is based on the histologic presence of Reed-Sternberg cells in Hodgkin lymphoma. Salivary immunoglobulin A is the prominent immunoglobulin and is considered to be the main specific defense mechanism in oral cavity. The aim of this study was to determine the level of salivary immunoglobulin A in lymphoma patients before and after chemotherapy treatment. Subjects, materials and methods: The study included 25 patients (15 male and 10 female) with non–Hodgkin lymphoma(B-cell type) , 25 patients( 16 male and 9 female ) with Hodgkin lymphoma and 25 (15 male and 10 female) healthy control group. Whole un-stimulated saliva was collected to determine the level of salivary immunoglobulin A, which measured by Enzyme Link Immunosorbent Assay. Results: The level of salivary immunoglobulin A was significantly higher in pre-treatment patients in comparison with control group, and there was a significant decrease after chemotherapy treatment when compared to their base line levels in both study groups. Conclusion: The salivary immunoglobulin A was higher in lymphoma patients than control, then its level showed obvious decrease after chemotherapy treatment.
This work is aiming to study and compare the removal of lead (II) from simulated wastewater by activated carbon and bentonite as adsorbents with particle size of 0.32-0.5 mm. A mathematical model was applied to describe the mass transfer kinetic.
The batch experiments were carried out to determine the adsorption isotherm constants for each adsorbent, and five isotherm models were tested to choose the best fit model for the experimental data. The pore, surface diffusion coefficients and mass transfer coefficient were found by fitting the experimental data to a theoretical model. Partial differential equations were used to describe the adsorption in the bulk and solid phases. These equations were simplified and the
... Show MoreTo create a highly efficient photovoltaic-thermal (PV-T) system and maximise the energy and exergy efficiency, this study aims to propose an innovative configuration of a PV-T system comprising wavy tubes with twisted-tape inserts. Following the validation of a numerical model, a parametric study has been conducted to assess the geometrical effects of twisted tape and wavy tubes, as well as the coolant fluid type and velocity, on the overall performance of a PV-T system, located in Shiraz, Iran. It is found that employing twisted tape improves the energy and exergy efficiency by approx. 6.3%. The best configuration yields 12.4% and 16.8% increase in energy and exergy efficiency compared to conventional PV systems. This is achieved at 15% vo
... Show MoreThis research explores the concept of cruel optimism in the context of challenging patriarchal, cultural, and social traditions in Ayad Akhtar’s The Who and the What. Cruel optimism, a term coined by Lauren Berlant, refers to the paradoxical attachment to positive aspirations that may ultimately obstruct personal fulfillment and well-being. This study examines how individuals who resist patriarchal norms and entrenched cultural traditions often face significant emotional, psychological, and social challenges. Through a multidisciplinary approach, including literary analysis, sociological perspectives, and psychological insights, the research delves into the lived experiences of those who strive for autonomy, equality, and self-realization
... Show MoreBipedal robotic mechanisms are unstable due to the unilateral contact passive joint between the sole and the ground. Hierarchical control layers are crucial for creating walking patterns, stabilizing locomotion, and ensuring correct angular trajectories for bipedal joints due to the system’s various degrees of freedom. This work provides a hierarchical control scheme for a bipedal robot that focuses on balance (stabilization) and low-level tracking control while considering flexible joints. The stabilization control method uses the Newton–Euler formulation to establish a mathematical relationship between the zero-moment point (ZMP) and the center of mass (COM), resulting in highly nonlinear and coupled dynamic equations. Adaptiv
... Show MoreSince the Internet has been more widely used and more people have access to multimedia content, copyright hacking, and piracy have risen. By the use of watermarking techniques, security, asset protection, and authentication have all been made possible. In this paper, a comparison between fragile and robust watermarking techniques has been presented to benefit them in recent studies to increase the level of security of critical media. A new technique has been suggested when adding an embedded value (129) to each pixel of the cover image and representing it as a key to thwart the attacker, increase security, rise imperceptibility, and make the system faster in detecting the tamper from unauthorized users. Using the two watermarking ty
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show More