Background: Dental implant considers a unique treatment option for the replacement of missing dentition. The new trend of implants is looking for materials which accelerate bone formation in bone implant interface and enhance osseointegration to provide immediate loading directly after placement and decrease the time period which is disturbs patients and uncomfortable. The aim of the study was to evaluate the effect of nano zirconium oxide (ZrO2) and nano hydroxyapatite (Hap) mixture coating of screw shaped commercially pure titanium (cpTi) implants on bond strength at the bone implant interface with torque removal test and histological analysis in comparison with non coated implants. Materials and methods: Forty screws were machined from cpTi rods using a lathe machine. Then 20 screws coated by electrophoretic deposition method by a mixture of nano hydroxyl apatite and nano zirconium oxide, while the other 20 screws remain uncoated. The tibia of 10 adult white New Zealand experimental rabbits was chosen as implantation site, each rabbit tibia received 2 screws, one coated and the other uncoated. Torque removal test was performed to measure the torque required to remove the screw and histological analysis was performed to observe the new bone formation, after 2 and 4 weeks healing intervals. Results: Implant coated with a mixture of nano zirconium oxide and nano hydroxyl apatite showed a significantly higher removal torque values compared to uncoated one. There was more new bone formation with coated implants for both healing periods. Conclusions: Coating by electrophoresis considers a valuable process to coat metallic implants with a ceramic material and to form a uniform composite layer of coating. Osseointegration improved at bone-implant interface associated with the coated implants, which was illustrated by higher bone formation at the two intervals of time 2 weeks and 4 weeks.
The adsorption of Malonic acid, Succinic acid, Adipic acid, and Azelaic acid from their aqueous solutions on zinc oxide surface were investigated. The adsorption efficiency was investigated using various factors such as adsorbent amount, contact time, initial concentration, and temperature. Optimum conditions for acids removal from its aqueous solutions were found to be adsorbent dose (0.2 g), equilibrium contact time (40 minutes), initial acids concentration (0.005 M). Variation of temperature as a function of adsorption efficiency showed that increasing the temperature would result in decreasing the adsorption ability. Kinetic modeling by applying the pseudo-second order model can provide a better fit of the data with a greater correla
... Show MoreThis study was aimed to study the effect of adding transglutaminase (TGase) on the mechanical and reservation properties of the edible films manufactured from soybean meal protein isolate (SPI) and whey protein isolate(WPI). The results showed an improvement in the properties with increase in the WPI ratios. Thickness of the SPI films amounted 0.097 mm decreased to 0.096 mm for the WPI: SPI films at a ratio of 2:1, when TGase was added decreased to 0.075 mm. While the tensile strength increased from 7.64 MPa for SPI films to eight MPa for the WPI: SPI films at a ratio of 2:1, when TGase was added increased to 11.04 MPa. Also, the elongation of the WPI: SPI films at a ratio of 2:1 presence of the TGase decreased to 40.6% compared wit
... Show MoreThe results of this study showed that the tongue of the adult Iraqi domestic cat is divided into three regions of apex, body and root. The dorsal surface of all regions possesses five types of lingual papillae, two mechanical which are filiform and cylindrical papillae, while the other three types are taste papillae which are foliate, fungiform and circumvallate papillae, while these papillae are absent on its ventral surface. The histological examination of all tongue areas revealed that it consisted of three tunica, the tunica mucosa and the tunica submucosa (the lamina propria) and the tunica muscularis. The tunica mucosa consisted of the epithelial lining, which is a stratified squamous epithelial tissue covering the lingual papillae, a
... Show MoreThe main objectives of this study were investigating the effects of the maximum size of coarse Attapulgite aggregate and micro steel fiber content on fresh and some mechanical properties of steel fibers reinforced lightweight self-compacting concrete (SFLWSCC). Two series of mixes were used depending on maximum aggregate size (12.5 and 19) mm, for each series three different steel fibers content were used (0.5 %, 1%, and 1.5%). To evaluate the fresh properties, tests of slump flow, T500 mm, V funnel time, and J ring were carried out. Tests of compressive strength, splitting tensile strength, flexural tensile strength, and calculated equilibrium density were done to evaluate mechanical properties. For reference mixes, the
... Show MorePVC/Kaolinite composites were prepared by the melt intercalation method. Mechanical properties, thermal properties, flammability and water absorption percentage of prepared samples were tested. Mechanical characteristic such as tensile strength, elongation at break; hardness and impact strength (charpy type) were measured for all samples. It was found that the tensile strength and elongation at break of PVC composites decreased with increasing kaolinite loading. Also, the hardness of the composites increases with increase in filler content .The impact strength of the composites at the beginning increases at lower kaolinite loadings is due to the lack of kaolin adhesion to the matrix. However, at higher kaolin loadings. This severe agglom
... Show MoreWater quality sensors have recently received a lot of attention due to their impact on human health. Due to their distinct features, environmental sensors are based on carbon quantum dots (CQDs). In this study, CQDs were prepared using the electro-chemical method, where the structural and optical properties were studied. These quantum dots were used in the environmental sensor application after mixing them with three different materials: CQDs, Alq3 polymer and CQDs and Alq3 solutions using two different methods: drop casting and spin coating, and depositing them on silicon. The sensitivity of the water pollutants was studied for each case of the prepared samples after measuring the change in resistance of the samples at a temperature of
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show MorePhotonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MoreRemoving Congo red (CR) is critical in wastewater treatment. We introduce a combination of electrocoagulation (EC) and electro-oxidation (EO) to address the elimination of CR. We also discuss the deposition of triple oxides (Cu–Mn–Ni) simultaneously on both anodic and cathodic graphite electrodes at constant current density. These electrodes efficiently worked as anodes in the EC-EO system. The EC-CO combination eliminated around 98 % of the CR dye and about 95 % of the Chemical Oxygen demand (COD), and similar results were obtained with the absence of NaCl. Thus, EC-EO is a promising technique to remove CR in an environmentally friendly pathway.