Background: The aim of this study was to evaluate and compare the apical microleakage around retrograde cavities prepared with ultrasonic technique and filled with (Biodentine™) Materials and methods: 40 extracted single rooted human permanent maxillary teeth with mature apices were selected. The roots were prepared chemo-mechanically using k-files with crown-down technique and then obturated with lateral condensation gutta-percha technique. Teeth were divided into four main groups according to the cavity preparation method either manual or ultrasonic technique: Group A (n=10): A class I retrograde cavity at root end was prepared with traditional handpeice equipped and placement of Biodentine with manual condensation. Group B (n=10): A class I retrograde cavity at root end was prepared with Piezoelectric ultrasonic device equipped with ultrasonic tip with only manual compaction of the material. Group C (n=10): traditional handpeice and placement of Biodentine using both manual compaction and 5 second ultrasonic activation. Group D (n=10): Piezoelectric ultrasonic device and placement of Biodentine with both manual compaction and 5 second ultrasonic compaction. The teeth were immersed in 1% aqueous Methylene blue dye for 72 hr. Then they were sectioned longitudinally with a diamond disc and the depth of dye penetration was examined under high magnification 20X. Results: Statistical analysis showed a highly significant difference in microleakage among the tested groups in which Piezoelectric technique has proved superiority in retrograde cavity preparation and compaction of Biodentin when dye penetration scores were compared. So microleakage was highest with cavities prepared with handpeice and manual application of retrograde material group A (2.73±0.39) followed by microprepared cavities group C (1.86±0.16), and it was lowest with ultrasonically-prepared cavities group B (1.09±0.28) and group D (0.26±0.19). Conclusion: ultrasonic preparation produced significantly less microleakage than conventional method. Also less microleakage was observed with ultrasonic compaction of Biodentin when compared with conventional method of compaction.
The current study was concerned to address these gaps in literature by identifying: first level and type of future visions among the next graduation student, second level and type of future visions among the sample according to gender (Male- Female), third level of the illegal immigration among the sample, fourth level of the illegal immigration according to gender (Male, Female), and finally the relationship between future visions and illegal immigration. To achieve the aims of the current study, the researchers created a questionnaire for the future visions. The psychometric properties (e.g. face validity, structure validity, and reliability) were tested. Base on the current sample, results showed that the questionnaire had sound psych
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreThis paper presents a research for magnetohydrodynamic (MHD) flow of an incompressible generalized Burgers’ fluid including by an accelerating plate and flowing under the action of pressure gradient. Where the no – slip assumption between the wall and the fluid is no longer valid. The fractional calculus approach is introduced to establish the constitutive relationship of the generalized Burgers’ fluid. By using the discrete Laplace transform of the sequential fractional derivatives, a closed form solutions for the velocity and shear stress are obtained in terms of Fox H- function for the following two problems: (i) flow due to a constant pressure gradient, and (ii) flow due to due to a sinusoidal pressure gradient. The solutions for
... Show MoreMPEG-DASH is an adaptive bitrate streaming technology that divides video content into small HTTP-objects file segments with different bitrates. With live UHD video streaming latency is the most important problem. In this paper, creating a low-delay streaming system using HTTP 2.0. Based on the network condition the proposed system adaptively determine the bitrate of segments. The video is coded using a layered H.265/HEVC compression standard, then is tested to investigate the relationship between video quality and bitrate for various HEVC parameters and video motion at each layer/resolution. The system architecture includes encoder/decoder configurations and how to embedded the adaptive video streaming. The encoder includes compression besi
... Show MoreMany of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.3
Elastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .