Background: Platelet-rich fibrin (PRF) is a simple, low cost and minimally invasive way to obtain a natural concentration of autologous growth factors and is currently being widely experimented in different fields of medicine for its ability to aid the regeneration of tissue with a low healing potential. Fields of application are sports medicine, orthopedics, dentistry, dermatology, ophthalmology, plastic and maxillofacial surgery, etc. The rationale for using platelets in so many fields for the treatment of different tissues is because PLTs constitute a reservoir of critical GFs and cytokines, which may govern and regulate the tissue healing process that is quite similar in all kinds of tissues. Materials and Methods: Screw titanium implants inserted in the femurs of the thirty two adult rats. The right side is considered as experimental groups and the left side considered as control groups. Autologous platelet rich fibrin matrix applicated with the right screw implants . The sample divided into four groups, eight rats are sacrificed at four interval 3days, 7days, 2weeks, and 6weeks respectively. Histological, immunohistochemical (PDGF-A&IGF-1), and radio graphical were studied for each interval. Results: Histological examination showed the acceleration of bone formation and more rapid healing process in the screw implant with PRFM than in the control implant. Radio graphical examinations showed that the process of osseointegration started after 2weeks and complete radio opacity around the titanium implant after 6weeks. Immunohistochemical findings revealed high positive expression for IGF and PDGF in experimental implant in comparison to control one. Conclusion: This study was illustrated that PRFM material was osseo inductive material that enhances the osseointegration process in titanium implant site in comparison to the normal physiological healing process. The results show a positive effect of PRFM and it can be suggested for beneficial use in the practice of dentistry implantation, periodontics, oral surgery since it enhance osseointegration, reduce the period of patient suffering and the incidence of post implant complications.
The radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.
This research includes theoretical and evaluation design of a polarizer filter of high transmission in the near IR region of (900-1200nm) for different incidence angles to obtain a long wave and short wave pass filter using analytical calculations. Results refer to a new configuration design in fewer layers than used in previous studies in the long wave pass at incidence angles (45o,50o,55o). Adopted Hafnium dioxide (HfO2) and Magnesium fluoride (MgF2) as coating material at design wavelength (933nm), the study also included design short wave pass polarizer by using the same coating material.
Background: Improved glucose level control with insulin injections have allowed for the diabetic population to live longer and healthier lives. Unfortunately diabetes remains a worldwide epidemic disease with multiple health implications. Specifically, its effects upon fracture healing are compromised in diabetics with as high as 87% recovery delay relative to “healthy†counterparts. Current medical treatments for bone injuries have been largely focused on replacing the lost bone with allogenic or autogenous bone grafts, beta-tricalcium phosphate (β -TCP), a ceramic alloplast, has interconnected system of micropores, has been widely used as a biologically safe osteoconductive bone substitute. The aim of this study was histol
... Show MoreThe rapid developmemt of information technology and its use in all fields has a bositive influence on all fields , and financial markets have a share of this development through the use of an electronic trading system to settle transactions and enhance transparency and disclosure in all activities of these markets and stimulate their performance .
It is worth nothing that these revolutions remove the necessity for nonstop connection with persons through the internet or phone networks , novel knowledge decreases the charges of structure original transaction system and reducing the fences of new participants entry .
The development in transportations expertise allows for quicker or
... Show MoreNowadays, the field of radionuclide treatment is enjoying an exciting stage and preparing for further growth and progress in the future. For instance, in Asia, the large spread of liver and thyroid diseases has resulted in several new developments/clinical trials using molecular radiotherapy (i.e. targeted radionuclide therapy). Iodine-124 has unique physical properties including long half-life that adding an advantage for pharmacokinetics and radiopharmaceutical analysis. One of its applications in nuclear medicine is in Positron Emission Tomography (PET).
An evaluation the performance of the irrigation system for the Al-Ishaqi irrigation project for the Eastern Canal was conducted to identify management strategies that can be used to improve the operation and performance of the irrigation system. The study area is located in Salah al-Din G.0overnorate, Iraq. The field work included determining the moisture content of the soil before and after irrigation, measuring the inflow of the field to find the depth of the applied water, field monitoring, and measuring the depth of the root zone for each irrigation process. Field measurements showed that the average efficiency of water application for the two fields (A, and B) are 59.81% and 38.6%, respectively. The results of the efficiency of
... Show MoreXXXX