Background: Platelet-rich fibrin (PRF) is a simple, low cost and minimally invasive way to obtain a natural concentration of autologous growth factors and is currently being widely experimented in different fields of medicine for its ability to aid the regeneration of tissue with a low healing potential. Fields of application are sports medicine, orthopedics, dentistry, dermatology, ophthalmology, plastic and maxillofacial surgery, etc. The rationale for using platelets in so many fields for the treatment of different tissues is because PLTs constitute a reservoir of critical GFs and cytokines, which may govern and regulate the tissue healing process that is quite similar in all kinds of tissues. Materials and Methods: Screw titanium implants inserted in the femurs of the thirty two adult rats. The right side is considered as experimental groups and the left side considered as control groups. Autologous platelet rich fibrin matrix applicated with the right screw implants . The sample divided into four groups, eight rats are sacrificed at four interval 3days, 7days, 2weeks, and 6weeks respectively. Histological, immunohistochemical (PDGF-A&IGF-1), and radio graphical were studied for each interval. Results: Histological examination showed the acceleration of bone formation and more rapid healing process in the screw implant with PRFM than in the control implant. Radio graphical examinations showed that the process of osseointegration started after 2weeks and complete radio opacity around the titanium implant after 6weeks. Immunohistochemical findings revealed high positive expression for IGF and PDGF in experimental implant in comparison to control one. Conclusion: This study was illustrated that PRFM material was osseo inductive material that enhances the osseointegration process in titanium implant site in comparison to the normal physiological healing process. The results show a positive effect of PRFM and it can be suggested for beneficial use in the practice of dentistry implantation, periodontics, oral surgery since it enhance osseointegration, reduce the period of patient suffering and the incidence of post implant complications.
Building numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
This investigation integrates experimental and numerical approaches to study a novel solar air heater aimed at achieving an efficient design for a solar collector suitable for drying applications under the meteorological conditions of Iraq. The importance of this investigation stems from the lack of optimal exploitation of solar energy reaching the solar collector, primarily attributable to elevated thermal losses despite numerous designs employed in such solar systems. Consequently, enhancing the thermal performance of solar collectors, particularly those employed in crop drying applications, stands as a crucial focal point for researchers within this domain. Two identical double-pass solar air heaters were designed and constructed for
... Show MoreA novel planar type antenna printed on a high permittivity Rogers’ substrate is proposed for early stage microwave breast cancer detection. The design is based on a p-shaped wide-slot structure with microstrip feeding circuit to eliminate losses of transmission. The design parameters are optimized resulting in a good reflection coefficient at −10 dB from 4.5 to 10.9 GHz. Imaging result using inhomogeneous breast phantom indicates that the proposed antenna is capable of detecting a 5 mm size cancerous tumor embedded inside the fibroglandular region with dielectric contrast between the target and the surrounding materials ranging from 1.7 : 1 to 3.6 : 1.
One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreEpithelial ovarian cancer is the leading cause of cancer deaths from gynecological malignancies. Angiogenesis is considered essential for tumor growth and the development of metastases. VEGF and IL?8 are potent angiostimulatory molecules and their expression has been demonstrated in many solid tumors, including ovarian cancer.VEGF and IL-8 concentrations were measured by ELISA test (HumanVEGF,IL-8). Bioassay ELISA/ US Biological / USA).The median VEGF and IL-8 levels were significantly higher in the sera of ovarian cancer patients than in those with benign tumors and in healthy controls.Pretreatment VEGF and IL-8 serum levels might be regarded as an additional tool in the differentiation of ovarian tumors.
Background: Dyslipidemia is defined as an abnormally high level of various lipids in the blood. It is considered a major risk for atherosclerosis and coronary artery disease. Genetic susceptibility can have a significant influence on the development and progression of dyslipidemia. ApoB-100 R3500Q mutation and ApoE variants are among those genetic risks for dyslipidemia. This study aims to assess the possible contribution of ApoB and ApoE variants on lipid profile among a group of early-onset ischemic heart disease (IHD) patients in comparison to a group of controls. Methods: Forty patients with dyslipidemia and early-onset IHD without chronic conditions likely to cause derangement of lipid levels were recruited to this case-control study
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a base. Complexes of the composition [M(L)(Q)] with (1
... Show MoreObjective)s): To evaluate the quality of life for adult clients with hypermobility syndrome at private clinics in Baghdad City. Methodology: A cross-sectional study used a purposive ‘’non-probability’’ sample of (75) adult clients with Hypermobility Syndrome (HMS) male and female who age (25-64) years. The data were collected through the utilization of standard developed questionnaire of the world health organization (WHO). Data collected by interview with each client who is involved in the study. Each interview takes approximately (20) minutes. Results: The study revealed that there is an effect of hypermobility syndrome on the quality of life, which recorded fair level in general. The study also reported that there is an effect
... Show MoreThis study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe
... Show More