Background: the aim of this study was to evaluate the effect of different surface acids treatments (37%phospjoric acid, 5%hydrofluoric acid, 1.23 acidulated phosphate fluoride) of feldspathic ceramic VITA 3D MASTER , and the effect of thermocycling on shear bond strength using a ceramic repair kit (ivoclar/vivadent). Material and Methods: sixty Nickel-Chromium metal base plates were prepared(9mm diameter,3mm depth) using lost wax technique, 2mm thick layer of ceramic(VITA 3D MASTER) fused to metal plates, all specimens were embedded in acrylic resin blocks except their examined surfaces and divided into 3 main groups 20 specimens each, Grp A: treatment with 37%phosphoric acid for 2 mins, Grp B: etching with 5% hydrofluoric acid for 2mins, Grp C: etching with 1.23% acidulated phosphate fluoride for 10 mins; monobond-plus, heliobond, resin composite(Tetric EvoCeram) were applied to each specimen according to manufacturer's instruction using transparent split mold(5mm diameter, 4 mm height); specimens were stored in 37OC distilled water for 12 weeks, 10 specimens of each group were subjected to thermocycling between 5 oC and 55 o C for 800 cycles with 30s dwell time; shear bond strength was determined by a universal testing machine (instron 1122) at a cross head speed 0.5mm/min; One way ANOVA test, LSD test and student-t test were used to analyze shear bond strength. Results: Mean shear bond strength values for the tested groups were: A1= 11.65±0.68 Mpa, A2=10.88±0.58 Mpa, B1=17.93±0.41 Mpa, B2=17.42±0.35 Mpa, C1=15.17±0.61 Mpa, C2=14.51±0.48 Mpa ; one way ANOVA test showed highly significant difference among groups; LSD test revealed that the use of 5% HF for ceramic surface treatment(GB) was highly significant than the treatment with 37%PA(GA) or 1.23%APF(GC) respectively and the use of 1.23%APF(GC) was highly significant than the use of 37%PA(GA); Student t- test showed a significant difference between subgroups of the same group with and without thermocycling. Conclusion: ceramic surface treated with 5% HF acid for 2 mins recorded the highest shear bond strength, followed by surface treatment with 1.23% APF for 10 mins, most specimens treated with 5%HF showed cohesive failure with in ceramic while specimens treated with 1.23%AFP showed more (adhesive/cohesive) failure than adhesive or cohesive alone, and specimens treated with 37% PA showed nearly 50:50 adhesive and combination failure, thermocycling reduced the bond strength of each group significantly
This research aims to investigate the thermal performance of different thermal composite insulators, wrapped around a closed-loop copper pipe (CLP). To achieve this aim a system was designed and manufactured. It is consisted of closed water tank insulated by Rock Wool, and supplied with two electric heaters, two thermostat, a flow meter, a water pump, digital temperature scales, and four series of (CLP).
Six insulators were prepared namely; composites of Impregnated Fiberglass with Elastoclad and foaming Rubber (FER), Impregnated Fiberglass with Elastoclad resin and Polymeric Membrane (FEM), Impregnated Fiberglass with Polyurethane thermoset resin and Foaming Rubber (FUR), Impregnated Fiberglass with Polyurethane thermoset resin and P
Objective: In order to evaluate the effect of different typed of Separating Medium on the roughness of the fitted
tissue surface of acrylic denture base.
Methodology: Chosen three types of separating medium (Group A Tin foil), (Group B Detery Isolant),(Group C
Cold Mould Seal),used 30 samples of hot cure acrylic resin ,10 samples for each group, after complete curing of
these samples , Profilometer device was used to measure the surface roughness of each sample in all groups.
Results: Using One Way ANOVA Test and LSD test, the results were highly significant in differences among all
groups. Although (Group A) showing lest roughness, (Group B) showing a satisfactory result of roughness, While
(Group C) Showing the hig
A hand lay-up method was used to prepare Epoxy/ metal composites. Epoxy resin (EP) was used as a matrix with metal particles (Al, Cu, and Fe) as fillers.
The preparation method includes preparing square panels of composites with different weight percentage of fillers (10, 20, 30, 40, and 50%). Standard specimens (88mm in diameter) for thermal conductivity tests were prepared to measure thermal conductivity kexp.The result of experimental thermal conductivity kexp, for EP/metal composites show that, kexp increase with increasing weight percentage, For EP/ Al and EP/Cu composites, and it have have maximum values of 0.33 and 0.35 W/m.K, respectively. While kexp for EP/ Fe composite show slight increase with maximum value of 0.186 W/m.K.
EP/ metal composites were prepared as adhesives between two steel rods. Epoxy resin (EP) was used as a matrix with metal as fillers (Al, Cu, Fe,).
The preparation method for tensile adhesion tests includes two steel rods with adhesive composites between the rods to measure adhesion strength Sad and adhesion toughness Gad.
Results of tensile adhesion tests show that EP/ metals composite have maximum strength Sad for certain weight percentage of metals 2.95 and 9MPa at 10% for EP/Al and EP/Cu composite and 8.2MPa at 40% for EP/Fe composites
Sheets of Epoxy (EP) resin with addition of TiO2 of grain size (1.5μm, and 50nm) and weight percentage (1%, 3%, and 5%) were prepared. Discs of 20mm diameter and 3mm thickness were cut for dielectric measurements. Dielectric properties (dielectric constant, dispassion factor and electrical conductivity) over the frequency range 102 -106 Hz were measured.
Comparison was made between the effect of micro and nano particles of TiO2 on the dielectric properties of EP composites with different weight percentage. Epoxy composites with micro sized particles of TiO2 were observed to have the better values of dielectric properties.
The present studies are focused on the modification of the properties of epoxy resin with different additives namely aluminum, copper by preparing of composites systems with percentage (20%, 40% and 50%) of the above additives. The experimental results show that the D.C of conductivity on wt% filler content at ( 293-413 ) K electrical conductivity of all above composites increased with temperature for composites with filler contact and find the excellent electrical conductivity of copper and lie between (2.6*10-10 - 2.1*10-10)?.cm . The activation energy of the electrical conductivity is determined and found to decrease with increasing the filler concentration.
Background: One of the most common complications of dentures is its ability to fracture, so the aim of this study was to reinforce the high impact denture base with carbon nanotubes in different concentrations to improve the mechanical and physical properties of the denture base. Materials and methods: Three concentrations of carbon nanotubes was used 0.5%, 1%, 1.5% in a pilot study to see the best values regarding transverse strength, impact, hardness and roughness test, 1 wt% was the best concentration, so new samples for control group and 1wt% carbon nanotubes and the previous tests were of course repeated. Results: There was a significant increase in impact strength and transverse strength when we add carbon nanotubes in 1wt%, compared
... Show MoreBackground: With the increase in composite material use in posterior teeth, the concerns about the polymerization shrinkage has increased with the concerns about the formation of marginal gaps in the oral cavity environment. New generation of adhesives called universal adhesive have been introduced to the market in order to reduce the technique sensitive bonding procedures to give the advantage of using the bonding system in any etching protocol without compromising the bonding strength. The aim of the study was to study marginal adaptation of two universal adhesives (Single bondâ„¢ Universal and Prime and Bond elect) using 3 etching techniques under thermal cycling aging. Materials and Methods: Forty-eight sound maxillary first premola
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show More