Background: Separation and deboning of artificial teeth from denture bases present a major clinical and labortory problem which affect both the patient and the dentist. The optimal bond strength of artificial teeth with denture base reinforced with nanofillers and flexible denture bases and the effect of thermo cycling should be evaluated. This study was conducted to evaluate and compare the shear bond strength of artificial teeth (acrylic and porcelain) with denture bases reinforced by 5% Zirconium oxide nanofillers and flexible bases under the effect of different surface treatments and thermo cycling and comparing the results with conventional water bath cured denture bases. Material and methods: Two types of artificial teeth; acrylic and porcelain were used and prepared for this study. Five specimens of each tooth type were processed to each denture base materials after the application of different surface treatments; these teeth were bonded to heat polymerized, nano composite resin and flexible denture bases. Specimens were thermo cycled and tested for bond strength until fracture with an Instron universal testing machine. Data were analyzed with analysis of variance and student T-test. Photomicrographic examinations were used to identify adhesive and cohesive failures within debonded specimens. Results: The mean force required to fracture the specimens were obviously larger for nanocomposite specimens compared with the heat cured and flexible specimens. The most common failure was cohesive within the tooth or the denture base. With each base material, the artificial teeth which were treated with thinner exhibited highest shear bond strength. Thermocycling had deleterious effect on the flexible denture base specimens. In general, nanocomposite and heat cured groups failed cohesively within the artificial tooth. While the valplastic groups failed adhesively at the tooth denture base interface. Conclusions: Within the limitations of this study, the type of denture base materials and surface treatments of the tooth selected for use may influence the shear bond strength of the tooth to the base. Selection of more compatible combinations of base and artificial teeth may reduce the number of prosthesis fractures and resultant repairs. Key words: acrylic teeth, porcelain teeth, Nano composite denture base, thermo cycling, flexible denture, thinner,
In this work, two cone-inverted cylindrical and cross-hybrid dielectric resonator antennas are stacked and excited by the coaxial probe method with an operating standard resonant frequency of 5.438 GHz. A drawback of these standard Dielectric Resonator Antennas (DRAs) is their narrow bandwidth. For good antenna performance, a stacked DR geometry and a thick dielectric substrate having a low dielectric constant are desired since this provides large bandwidth, better radiation power, reduces conductor loss and nonappearance of surface waves. Many approaches, such as changing the shape of the dielectric resonator, have been used to enhance bandwidth. Using DRA, having the lowest dielectric constant, increases the bandwidth and the electroma
... Show MoreUnder aerobic and anaerobic conditions, two laboratory-scale reactors were operated. Each reactor
was packed with 8.5 kg of shredded synthetic solid waste (less than 5 cm) that was prepared according to an
average composition of domestic solid waste in the city of Kirkuk. Using an air compressor, aerobic
conditions were created in the aerobic reactor. This study shows that the aerobic reactor was more efficient in
COD and BOD5 removal which were 97.88% and 91.25% while in case of anaerobic reactor, they were
66.53%and 19.11%, respectively.
This study is included the preparation of two tetradentate amide-thiol proligands of the general structure [H2Ln], [where; (n = (1–2)]. The ligands [H2L1] and [H2L2] have been prepared from the reaction of the cyclic thioester 2-oxo-1, 4-dithiacyclohexane (compound 1) and 3-chloro-2-oxo-1, 4 dithiacyclohexane (compound 2) with 2-aminomethanepyridine in (1:1) ratio respetively. The reaction was carried out in chloroform at room temperature and under N2 atmosphere. Structural formula of these two ligands have been reported.
The radial wave function R(r) and the radial distribution function P(r) as a function of (r), for the Hydrogen atom was calculated for several atomic state (1s,2s,2p,3s,3p,3d) The results were compared with Hydrogen like atom(He+,Li+2,Be+3).
In the present study, mixed ligand compounds of Mn(II), Ni(II), Co(II), Cu(II), Cd(II) and Hg(II) were synthesized using new Ligand N1,N4-bis (pyrimidin-2-ylcarbamothioyl) succinimide (NPS) derived from [Butanedioyl diisothiocyanate with 2- aminipyridine] as first ligand, proline (pro) as second ligand and evaluation of their antioxidant activities for ligand, nickel and cobalt complex towards 1.1-Di-phenyl-2picrylhydrazyl (DPPH) will be compared to the standard anti-oxidants (i.e. the ascorbic acid). Those materials that have been prepared provided results are a result of exhibiting different activities of the radical scavenging for all of the compounds. Compounds were observed then confirmed through the Fourier-tra
... Show MoreColumns subjected to pure axial load rarely exist in practice. Reinforced concrete columns are usually subjected to combination of axial and lateral actions and deformations, caused by spatially‐complex loading patterns as during earthquakes causes lateral deflection that in turn affects the horizontal stiffness. In this study, a numerical model was developed in threedimensional nonlinear finite element and then validated against experimental results reported in the literatures,
to investigate the behavior of conventionally RC columns subjected to axial load and . lateral reversal cyclic loading. To achieve this goal, numerical analysis was conducted by using finite element program ABAQUS/Explicit. The variables co
Everywhere carriers incur a measure of liability for the safety of the goods. Carriers are liable for any damage or for the loss of the goods that are in their possession as carriers unless they prove that the damage or loss is attributable to certain excepted causes. Damaged and lost items can unfortunately be a common problem when shipping freight. Legal responsibilities arise due to loss or damage during transit while cargo is in their care. This study intends to investigate the nature of the liability of the maritime carrier when this liability is realized, and the extent to which it can be paid or disposed of given the risks realized from the transportation process, which may result in damage or loss of the goods, and the damag
... Show More