Background: The formation of white spot lesions around fixed orthodontic attachments is a common complication during and after fixed orthodontic treatment, which hinders the result of a successfully completed orthodontic treatment. The aim of the study was to assess the effectiveness of the Caries Infiltrant (ICON®) on prevention of caries on the smooth enamel surface when applied alone or combined with conventional adhesives. Materials and methods: Seventy eight human premolar enamel discs were randomly assigned to six groups (n=13). The discs were etched and treated with resins of different monomer content forming the following groups: (1)Untreated etched samples served as the negative control, (2) ICON® (DMG), (3) Adper™ SB 2 (3M ESPE), (4) Heliobond (IvoclarVivadent), (5) ICON®+ Adper™ SB 2 and (6) ICON®+ Heliobond. Specimens were subjected to demineralization by immersion in hydrochloric acid (pH 2.6) for 18 days. Calcium dissolution into the acid was assessed by photometric test via spectrophotometer at 24 hour intervals. Results: The results revealed that, there was a highly significant difference between the sealed groups and the unsealed (untreated) one (p≤0.00) indicating that the unsealed specimens showed the highest amount of Ca ion loss among all other groups. Additionally, there was no significant difference between untreated specimens and the ICON® sealed ones. While, Heliobond decreased the Ca ion loss significantly compared to the untreated specimens and Adper™ SB 2 performed significantly better than both ICON® and Heliobond. Furthermore, the combination of ICON® with either Adper™ SB 2 or Heliobond served as the best protective measures and maintained the protective effect during the whole experiment period. Therefore, within the limitations of this in vitro study, it could be concluded that the use of Caries Infiltrant prior to the application of the tested conventional adhesives increases their protective effect against demineralization.
One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreThe result revealed that the peak of population density of cabbage aphid Brevicoryne brassicae was 523.20 individuals/plant on 21 March in edges of rapeseed field and was 1141.67 individuals/plant in center of the field. Results revealed that population density of cabbage aphid in rapeseed fields surrounded by cover crops significantly were low compared with that of monoculture rapeseed. The location of rapeseed plants (in edges or in center) significantly affected (p<0.05) the tested pest density, e.g. optimum density was 146.69 individuals/plant in the center of the field. Whereas was 93.32 in the edges. Effect of the interaction between location and surrounding vegetation was significant on aphid density, which their population densit
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a
... Show MorePatch in transdermal drug delivery(TDDS) used to overcome the hypodermic drawback, but these patch also have absorption limitation for hydrophilic and macromolecule like peptide and DNA. So that micronized projection have the ability for skin penetration developed named as microneedle. Microneedle drug delivery system is a novel drug delivery to overcome the limitation of TDDS like skin barrier restriction for large molecule. Microneedle patch can penetrate through skin subcutaneous into epidermis, avoiding nerve fiber and blood vessel contact. There are many type of microneedle patch like solid, polymer, hallow, hydrogel forming microneedle and dissolving microneedle with different method of microfabrication
Cubosomes are nanosized structures self-assembled nanostructured materials used for controlling the release of the entrapped drug molecule. Lornoxicam (LXM) is a potent analgesic nonsteroidal anti-inflammatory (NSAID) drug with a short half-life (3-4) hours. The present study aims to prepare LXM-loaded cubosomes with well-defined morphology, particle size, PDI, high entrapment efficiency, sustained drug release, and high zeta potential value, as a transdermal drug delivery system.
Twelve formulas of LXM-loaded cubosomal dispersions were prepared by a solvent dilution method using Glyceryl monooleate ( GMO) as polar lipid with different stabilizers as Pluronic® F127 or tween 80 and different types o
... Show MoreBackground: A case-control study design revealeda relationship between the present of fluoride, and the reduction of dental caries and the increase prevalence and severity of dental fluorosis .The aim of this study was to assess the prevalence and severity of dental caries in relation to dental fluorosis among school children in Al-Muthana'a Governorate. Materials and methods: It was conducted among primary school students aged 12 years old, the age was taken according to the criteria of World Health Organization (1997) (1).The number of students was selected in each sector of control group according to number of schools in that sector .Sectors of control group which depend on water of river as source of drinking water. Case group which inc
... Show MoreBackground: The demand for esthetic orthodontic appliances is increasing; so the esthetic orthodontic archwires were introduced. Among them, Teflon and Epoxy coated stainless steel archwires. The amount of force available from the archwire depends on the structural properties and susceptibility to corrosion. All metallic alloys are changed during immersion in artificial saliva, chlorhexidine mouthwash andtoothpaste, but their behaviors differ from one type to another. They corrode at different rates, which lead to decrease the amount of force applied to the teeth. This in vitro study was designed to evaluate the corrosion pits in stainless steel archwires coated with Teflon and with Epoxy in dry and after immersion in artificial saliva, chl
... Show MoreThe aim of this work is to enhance the mechanical properties of the glass ionomer cement GIC (dental materials) by adding Zirconium Oxide ZrO2 in both micro and nano particles. GIC were mixed with (3, 5 and 7) wt% of both ZrO2 micro and nanoparticles separately. Compressive strength (CS), biaxial flexural strength (BFS), Vickers Microhardness (VH) and wear rate losses (WR) were investigated. The maximum compression strength was 122.31 MPa with 5 wt. % ZrO2 micro particle, while 3wt% nanoparticles give highest Microhardness and biaxial flexural strength of 88.8 VHN and 35.79 MPa respectively. The minimum wear rate losses were 3.776µg/m with 7 wt. % ZrO2 nanoparticle. GIC-contai
... Show More