Background: Recent implant surgical approach aims to cause less trauma, invasiveness and pain as much as possible and to reduce patient and surgeon discomfort, time of surgery and time needed for functional implant loading. Flapless surgical techniques considered recently as one of the most popular techniques that may achieve these aims especially enhancing osseointegration and subsequently implant stability within less time than the traditional flapped surgical technique. So this study aimed to make a comparison between flapped and flapless surgical techniques in resulted implant stability according to resonance frequency analysis RFA and in duration of surgical operation. Materials and methods: A total of 26 patients with 41 implants (one implant in the study group failed so it was excluded from the statistical analysis) were randomized into two groups: control group which involved 20 implants inserted by conventional flapped surgical approach and study group which involved 20 implants inserted by flapless surgical approach. Estimation of alveolar bone was done for study group by bone (ridge) mapping procedure. Duration of surgical operation for each implant, Implant stability was measured at three time intervals (at surgery, two months and three months after surgery). Results: After three months interval of surgery the mean implant stability of the study (flapless) group achieved significant higher implant stability than control (flapped) group (P< 0.05) and the difference in measured implant stability was (5.05) implant stability quotient(ISQ). The time of surgical operation for implants in the study group significantly was less than that of control group (P< 0.01). Conclusions:implants placed with flapless surgical technique can produce high implant stability in shorter time and consume prominently shorter time for surgical operation compared to those placed with conventional flapped technique.
There are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network sim
... Show MoreCervical Uterine Cancer is a disease that explains the vulnerability in which women are in terms of reproductive health with an impact on occupational health and public health, even when in Mexico the prevalence rate is lower than the other member countries of the OECD, its impact on Human Development and Local Development shows the importance that the disease have in communities more than in cities where prevention policies through check-ups and medical examinations seem to curb the trend, but show the lack of opportunities and capacities of health centers in rural areas. To establish the reliability, validity, and correlations between the variables reported in the literature with respect to their weighting in a public hospital. A
... Show MoreTransportation networks impact millions of people daily. Their efficiency immediately affects travel time, safety, and environmental sustainability. Unfortunately, various issues hinder the expected performance and efficiency of these networks. Traffic congestion is an up-to-date issue in the urban environment. Fuel consumption is high because travel time has increased, which has a passive environmental impact. Extensive research has been conducted to progress the intelligent transportation systems installed on communication networks and information to treat this congestion. However, there is a significant amount of affront residue in combining real-time data, estimation analytics, and 5G abilities effectively. This paper offers a n
... Show MoreLearning programming is among the top challenges in computer science education. A part of that, program visualization (PV) is used as a tool to overcome the high failure and drop-out rates in an introductory programming course. Nevertheless, there are rising concerns about the effectiveness of the existing PV tools following the mixed results derived from various studies. Student engagement is also considered a vital factor in building a successful PV, while it is also an important part of the learning process in general. Several techniques have been introduced to enhance PV engagement; however, student engagement with PV is still challenging. This paper employed three theories—constructivism, social constructivism and cognitive load t
... Show MoreAlternative distribution to estimate the Dose – Response model in bioassay excrement
This research concern to study five different distribution (Probit , Logistic, Arc sine , extreme value , One hit ), to estimate dose –response model by using m.l.e and probit method This is done by determining different weights in each distribution in addition find all particular statistics for vital model .
In this paper, an approach for object tracking that is inspired from human oculomotor system is proposed and verified experimentally. The developed approach divided into two phases, fast tracking or saccadic phase and smooth pursuit phase. In the first phase, the field of the view is segmented into four regions that are analogue to retinal periphery in the oculomotor system. When the object of interest is entering these regions, the developed vision system responds by changing the values of the pan and tilt angles to allow the object lies in the fovea area and then the second phase will activate. A fuzzy logic method is implemented in the saccadic phase as an intelligent decision maker to select the values of the pan and tilt angle based
... Show More