Background: The demand for esthetic orthodontic appliances is increasing; so the esthetic orthodontic archwires were introduced. Among them, Teflon and Epoxy coated stainless steel archwires. The amount of force available from the archwire depends on the structural properties and susceptibility to corrosion. All metallic alloys are changed during immersion in artificial saliva, chlorhexidine mouthwash andtoothpaste, but their behaviors differ from one type to another. They corrode at different rates, which lead to decrease the amount of force applied to the teeth. This in vitro study was designed to evaluate the corrosion pits in stainless steel archwires coated with Teflon and with Epoxy in dry and after immersion in artificial saliva, chlorhexidine(0.2%( (Parodontax) and toothpaste media (Sensodyne) for (1, 7 and 28) days intervals. Moreover, this study is intended to compare the corrosion pits for each type of archwires at these different media among all intervals. Materials and Methods: In this study, two hundred forty pieces of orthodontic wires of Teflon (Hubit) coated Stainless steel (120 pieces) and epoxy (Orthotechnology) coated Stainless steel (120 pieces), rectangular in cross section, size (0.019 x 0.025) inch and 15mm in length divided into four groups according to immersion media: (dry environment group, artificial saliva group, chlorhexidine group and toothpaste group). The atomic force microscope was used to measure the corrosion pits for all samples at dry and wet conditions and after different immersion periods. Results: Statistical analysis showed that there was a highly significant increase in the corrosion pits of Teflon coated stainless steel archwires (P ≤ 0.05) in wet environment at 28 days immersion period.The highest corrosion pits were found in the toothpaste medium for the two archwire types at 28 days immersion period. Conclusion: We can conclude that Epoxy coatedstainless steel archwires are indicated to be used above Teflon coated stainless steel archwires in terms of corrosion resistance. IfTeflon coated stainless steel archwires should to be used, they should be change in shorter periods than Epoxy coated stainless steel archwires type Key words: Esthetic coated archwire, corrosion, Teflon, Epoxy, wet environment, AFM.
Chromium oxide (Cr2O3) doped ZnO nanoparticles were prepared by pulsed laser deposition (PLD) technique at different concentration ratios (0, 3, 5, 7 and 9 wt %) of ZnO on glass substrate. The effects of ZnO dopant on the average crystallite size of the synthesized nanoparticles was examined By X-ray diffraction. The morphological features were detected using atomic force microscopy (AFM). The optical band gap value was observed to range between 2.78 to 2.50 eV by UV-Vis absorption spectroscopy, with longer wavelength shifted in comparison with that of the bulk Cr2O3 (~3eV). Gas sensitivity, response, and recovery times of the sensor in the presence of NH3
... Show MoreIn this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreIn this research, the mechanism of cracks propagation for epoxy/ chopped carbon fibers composites have been investigated .Carbon fibers (5%, 10%, 15%, and 20%) by weight were used to reinforce epoxy resin. Bending test was carried out to evaluate the flexural strength in order to explain the mechanism of cracks propagation. It was found that, the flexural strength will increase with increasing the percentage weight for carbon fibers. At low stresses, the cracks will state at the lower surface for the specimen. Increasing the stresses will accelerate the speed of cracks until fracture accorded .The path of cracks is changed according to the distributions of carbon fibers
An inert matrix that is used to control the release of (PTX) was prepared using Eudragit RL100 and RSPM types as matrix forming agent . The matrices were prepared by either dry granulation(slugging) , or wet granulation method using chloroform as a solvent evaporation vehichle. The cumulative release was adjusted by using polyvinylpyrollidone (PVP) or ethylcellulose (EC) polymers .The results indicated that both methods of preparation were valid for incorporation PTX as a sustained release granules .Moreover ,the results revealed that best polymer used was Eudragit RSPM in 3:20 polymer drug ratio .Besides to that , the results indicated that the release profiles were affected by pH- medium&
... Show More3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D mo
... Show MoreHigh smoke emissions, nitrogen oxide and particulate matter typically produced by diesel engines. Diminishing the exhausted emissions without doing any significant changes in their mechanical configuration is a challenging subject. Thus, adding hydrogen to the traditional fuel would be the best practical choice to ameliorate diesel engines performance and reduce emissions. The air hydrogen mixer is an essential part of converting the diesel engine to work under dual fuel mode (hydrogen-diesel) without any engine modification. In this study, the Air-hydrogen mixer is developed to get a homogenous mixture for hydrogen with air and a stoichiometric air-fuel ratio according to the speed of the engine. The mixer depends on the balance between th
... Show More