The research aims to identify the relationship between spatial ability and the physical structure of concepts to the students of the Faculty of Education for Pure Sciences / Ibn al-Haitham، research involved students from the third class / morning study for the year 2011/2012 totaling (98) male and female students ،distributed into three groups which were selected randomly . The number of students (26 males and females) represented research sample after excluding repeaters and absentees، the research included two tests ; one test of spatial ability، which included (20) items and other test the physical structure of concepts، which included (12) items distributed into four domains ، the first (linking between concepts) included (4) items and second (putting concepts on the map) included (3) items and the third (complete the map) included (3) items and the fourth (building the structure of the map) included (2) items ، were built on according to the approved controls and after applied to a sample of the research and using appropriate statistical methods show that the level of spatial ability of students high and statistically significant، while the level of the physical structure of concepts acceptable and non-statistically significant also show that the relationship is negative and very weak between the variables of the research.
Two simple methods for the determination of eugenol were developed. The first depends on the oxidative coupling of eugenol with p-amino-N,N-dimethylaniline (PADA) in the presence of K3[Fe(CN)6]. A linear regression calibration plot for eugenol was constructed at 600 nm, within a concentration range of 0.25-2.50 μg.mL–1 and a correlation coefficient (r) value of 0.9988. The limits of detection (LOD) and quantitation (LOQ) were 0.086 and 0.284 μg.mL–1, respectively. The second method is based on the dispersive liquid-liquid microextraction of the derivatized oxidative coupling product of eugenol with PADA. Under the optimized extraction procedure, the extracted colored product was determined spectrophotometrically at 618 nm. A l
... Show More