Purpose Heavy metals are toxic pollutants released into the environment as a result of different industrial activities. Biosorption of heavy metals from aqueous solutions is a new technology for the treatment of industrial wastewater. The aim of the present research is to highlight the basic biosorption theory to heavy metal removal. Materials and methods Heterogeneous cultures mostly dried anaerobic bacteria, yeast (fungi), and protozoa were used as low-cost material to remove metallic cations Pb(II), Cr(III), and Cd(II) from synthetic wastewater. Competitive biosorption of these metals was studied. Results The main biosorption mechanisms were complexation and physical adsorption onto natural active functional groups. It is observed that
... Show MoreTwo Schiff bases, namely, 3-(benzylidene amino) -2-thioxo-6-methyl 2,5-dihydropyrimidine-4(3H)-one (LS])and 3-(benzylidene amino)-6-methyl pyrimidine 4(3H, 5H)-dione(LA)as chelating ligands), were used to prepare some complexes of Cr(III), La(III), and Ce(III)] ions. Standard physico-chemical procedures including metal analysis M%, element microanalysis (C.H.N.S) , magnetic susceptibility, conductometric measurements, FT-IR and UV-visible Spectra were used to identify Metal (III) complexes and Schiff bases (LS) and (LA). According to findings, a [Cr(III) complex] showed six coordinated octahedral geometry, while [La(III), and Ce(III) complexes]were structured with coordination number seven. Schiff's bases a
... Show MoreThe research includes synthesis and identification of novel three amino acids ligands complexes of some heavy metal (II) ions by using the amino acids like glycine, L-alanine and L-valine. New metal mixed ligand complexes with amino acids are prepared the reaction by reacting the three amino acids with the metals(II) chloride by using 50% ethanolic solution and 50% distall water in the molar ratio [1:1:1:1] ( M:Gly:Ala:Val) except for Co(II) and Ni(II) complexes were found after diagnosis the coordination with both Lalanine and L-valine. The prepared complexes identified by using physical properties, flame atomic absorption and conductivity measurements, in addition, mass, FT.IR and UV.vis spectrum as well magnetic moment data. The general
... Show MoreObjectives: Six different Schiff bases were synthesized from ampicillin and amoxicillin with isatin, 5-bromoisatin, and 5-nitroisatin. Methods: Ampicillin and Amoxicillin are linked directly through their α-amino groups to the acyl side chain with isatin and isatin derivatives by nucleophilic addition using glacial acetic acid as a catalyst. Results: chemical structures of these Schiff bases were confirmed using FTIR, 1H NMR and elemental microanalysis. The antibacterial activity was evaluated by measuring minimum inhibitory concentration (MIC) values and showed various degrees of antibacterial activities when compared with parent drugs. Compounds 1a and 2b, which are the Schiff bases of ampicillin and amoxicillin with isatin, showed very
... Show MoreRKRAS L. K. Abdul Karem, F. H. Ganim, Biochemical and Cellular Archives, 2018 - Cited by 2
SYNTHESIS, CHARACTERIZATION, STRUCTURAL, THERMAL, POM STUDIES, ANTIMICROBIAL AND DNA CLEAVAGE ACTIVITY OF A NEW SCHIFF BASE-AZO LIGAND AND ITS COMPLEXATION WITH SELECTED METAL IONS
The new Schiff base 1‐[(2‐{1‐[(dicyclohexylamino)‐methyl]‐1H‐indol‐3‐yl}‐ethylimino)‐methyl]naphthalen‐2‐ol (HL) was prepared from 1‐{[2‐(1H‐Indol‐3‐yl)‐ethylimino] methyl}‐naphthalen‐2‐ol and dicyclohexyl amine. From this Schiff base, monomeric complexes [M (L)n (H2O)2 Cl2] with M = Cr, Fe, Mn, Cd, and Hg were synthesized and characterized based on elemental analysis (EA), FT‐IR, mass(MS), UV‐visible, thermal analysis, magnetic moment, and molar conductance. The results showed that the geometrical structural were octahedral geometries for the Cr(III) and Fe(III) complex
The new Schiff base 1‐[(2‐{1‐[(dicyclohexylamino)‐methyl]‐1H‐indol‐3‐yl}‐ethylimino)‐methyl]naphthalen‐2‐ol (HL) was prepared from 1‐{[2‐(1H‐Indol‐3‐yl)‐ethylimino] methyl}‐naphthalen‐2‐ol and dicyclohexyl amine. From this Schiff base, monomeric complexes [M (L)n (H2O)2 Cl2] with M = Cr, Fe, Mn, Cd, and Hg were synthesized and characterized based on elemental analysis (EA), FT‐IR, mass(MS), UV‐visible, thermal analysis, magnetic moment, and molar conductance. The results showed that the geometrical structural were octahedral geometries for the Cr(III) and Fe(III) complex
The aim of this work is the synthesis of new grafted PVA polymer with a derivative of Erythro-ascorbic acid (pentulosono-ɣ -lactone-2, 3-enedianisoate). All synthesized compounds were characterized by thin layer chromatography (TLC) and FTIR spectra and aldehyde was also characterized by (U.V-Vis), 1HNMR, 13CNMR and mass spectra. They were also evaluated for antimicrobial properties by dilute method against four pathogenic bacteria (Escherichia coli ,Klebsiella pneumonae, Staphylococcus aureus, Staphylococcus Albus) and two fungal (Aspergillus Niger, Yeast). All polymer metal complexes showed good activities against the various microbial isolates. The polymer metal complexes showed higher activity than the free polymer. The order of increa
... Show MoreThe synthesized ligand (3-(2-amino-5-(3,4,5-tri-methoxybenzyl)pyrimidin-4-ylamino)-5,5-dimethylcyclohex-2-enone] [H1L1] was characterized via fourier transform infrared spectroscopy (FTIR), 1H, 13C – NMR, Mass spectra, (CHN analysis), UV-vis spectroscopic approaches. Analytical and spectroscopic techniques like chloride content, micro-analysis, magnetic susceptibility UV-visible, conductance, and FTIR spectra were used to identify mixed ligand complexes. Its (ML13ph) mixed ligand complexes [M= Co (II), Ni (II), Cu (II), Zn (II), and Cd (II); (H1L1) = β-enaminone ligand=L1 and (3ph) =3-aminophenol= L2]. The results demonstrate that the complexes are produced with a molar ratio of M: L1:L2 (1:1:1). To generate the appropriate compl
... Show More