The purpose of this research is to prepare new vanillic acid derivatives with 1,2,4-triazole-3-thiol heterocyclic ring and evaluate their antimicrobial activity in a preliminary assessment. A multistep synthesis was established for the preparation of new vanillic acid-triazole conjugates. The intermediate of 4-(4-amino-5-mercapto-4H-1,2,4-triazol-3-yl)-2-methoxyphenol (4) reacts with different heterocyclic aldehydes (thiophene-2-carboxaldehyde, pyrrole-2-carboxaldehyde, thiophene-3-carboxaldehyde, and furfural ) in ethanol containing few drops of acetic acid yielded the corresponding 4-(4-(substituted amino)-5-mercapto-4H-1,2,4-1triazol-3-yl)-2-methoxy phenol derivatives (5-8). These compounds were characterized spectroscopically by FT-1IR and 1H-1NMR. These imine derivatives (5-8) were tested for their antimicrobial activity and compared with three different standard references (amoxicillin, ciprofloxacin, and fluconazole). Overall, compounds 6 and 8 exhibited varying degrees of inhibitory effects on the growth of the examined bacterial species and fungus. The most active one is compound 6 having pyrrole ring imine derivative showed potent activity against C. 1albicans and moderate activity against all tested bacteria compared to other derivatives but no activity toward P. 1aeruginosa and P. 1mirabilis.
Pyrolysis of virgin polyethylene plastics was studied in order to produce hydrocarbon liquid fuel. The pyrolysis process carried out for low and high-density polyethylene plastics in open system batch reactor in temperature range of 370 to 450°C.
Thermo-gravimetric analysis of the virgin plastics showed that the degradation ranges were between 326 and 495 °C. The results showed that the optimum temperature range of pyrolysis of polyethylene plastics that gives highest liquid yield (with specific gravity between 0.7844 and 0.7865) was 390 to 410 °C with reaction time of about 35 minutes. Fourier Transform Infrared spectroscopy gave a quite evidence that the produced hydrocarbon liquid fuel consisted ma
... Show MoreA new ligand [N- (1,5- dimethyl -3- oxo- 2 – phenyl - 2 ,3 – dihydro -1H- pyrazol -4- ylcarbamothioyl) acetamide] (AAD) was synthesized by reaction of acetyl isothiocyanate with 4-aminoantipyrine, The ligand was characterized by micro elemental analysis C.H.N.S., FT-IR ,UV-Vis and 1H-13CNMR spectra, some transition metals complex of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From the obtained results the molecular formula of all prepared complexes were [M(AAD)2(H2O)2]Cl2 (M+2 = Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral.
Date palm silver nanoparticles are a green synthesis method used as antibacterial agents. Today,
there is a considerable interest in it because it is safe, nontoxic, low costly and ecofriendly. Biofilm bacteria
existing in marketed local milk is at highly risk on population health and may be life-threatening as most
biofilm-forming bacteria are multidrug resistance. The goal of current study is to eradicate biofilm-forming
bacteria by alternative treatment green synthesis silver nanoparticles. The biofilm formation by bacterial
isolates was detected by Congo red method. The silver nanoparticles were prepared from date palm
(khestawy) fruit extract. The formed nanoparticles were characterized with UV-Vis
β-Adrenergic blocking agents, mostly comprising of β-amino alcohols, are of pharmaceutical significance and have received major attention due to their utility in the management of cardiovascular disorders including hypertension, angina pectoris, cardiac arrhythmias and other disorders related to the sympathetic nervous system. Most compounds available for clinical use belong to the aryloxypropanolamine series, which is considered the second generation of β-blocking agents. The present study includes the synthesis of compounds with an N-substituted oxypropanolamine moiety attached to the 1, 3, 4-thiadiazole derivatives. According to this information, eight compounds were synthesized and characterized by IR spectra and elemental m
... Show MoreBackground: Enterococcus faecalis is emerging as an important endodontic pathogen, which can persist in the environment for extended periods after treatment and may cause endodontic failure. It is known to produce biofilms, a community of bacteria enclosed within a protective polymeric matrix. This study aimed to establish whether the biofilm formation by Enterococcus faecalis can be inhibited with steralium, co+steralium, and 5% sodium hypochlorite in the root surface environment. Materials and Methods: Extracted human teeth were biomechanically prepared, vertically sectioned, placed in the tissue culture wells exposing the root canal surface to E. faecalis to form a biofilm. At the end of the 3rd and 6th weeks, all groups were treated fo
... Show MoreThree mesoporous silica with different functional group were prepared by one-step synthesis based on the simultaneous hydrolysis and condensation of sodium silicate with organo - silane in the presence of template surfactant polydimethylsiloxane - polyethyleneoxide (PDMS - PEO). The prepared materials were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM) and nitrogen adsorption/desorption experiments. The results indicate that the preparation of methyl and phenyl functionalized silica were successful and the mass of methyl and phenyl groups bonded to the silica structure are 15, 38 mmol per gram silica. The average diameter of the silica particles are 103.51,
... Show MoreEndophytic bacteria produced analogous secondary metabolites of their hosts. Similarly, the ability to generate antioxidants is not an exception. Dragon scales (Pyrrosia piloselloides), an epiphytic plant of the Polypodiaceae family, are frequently overlooked. This research aims to isolate antioxidant-producing bacteria from dragon-scale fern leaves. The antioxidant activities were tested after the extraction procedure using ethanolic extract. Bacteria were characterized and selected as candidates for antioxidant production by screening for the production of total phenolic compounds. Antioxidant levels were determined utilizing the ABTS, FRAP, and DPPH techniques. The preliminary findings of the entire phenolic compound test rev
... Show MoreLevan is an exopolysaccharide produced by various microorganisms and has a variety of applications. In this research, the aim was to demonstrate the biological activity of levan which produced from B. phenoliresistens KX139300. These were done via study the antioxidant, anti-inflammatory, anticancer and antileishmanial activities in vitro. The antioxidant levan was shown 80.9% activity at 1250 µg/mL concentration. The efficient anti-inflammatory activity of 88% protein inhibition was noticed with levan concentration at 35 µg/mL. The cytotoxic activity of levan at 2500 µg/mL concentration showed a maximum cytotoxic effect on L20B cell line and promastigotes of Leishmani tropica. Levan has dose-dependent anticancer and antileishman
... Show More