The aim of this thesis is to introduce a new concept of fibrewise topological spaces which is said to be fibrewise slightly topological spaces. We generalize some of the main results that have been reached from fibrewise topology into fibrewise slightly topological space. We introduce the concepts of fibrewise slightly closed, fibrewise slightly open, fibrewise locally sliceable, and fibrewise locally sectionable slightly topological spaces. Also, state and prove several propositions related to these concepts. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise slightly T_0 spaces, fibrewise slightly T_1 spaces, fibrewise slightly R_0 spaces, fibrewise slightly T_2 spaces, fibrewise slightly functionally Hausdorff spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces, and fibrewise slightly functionally normal spaces have been extend. In addition, we introduce many propositions related to these concepts. Furthermore, and show the notions of fibrewise slightly compact and connected fibrewise slightly topological spaces. Finally, the concepts are studied slightly convergent, slightly directed toward in fibrewise slightly, as well fibrewise slightly perfect topological spaces, fibrewise slightly weakly closed topological spaces, fibrewise slightly almost perfect topological spaces, and fibrewise slightly* topological spaces. Also, study several theorems and characterizations concerning these concepts.
In the present study, Čech fuzzy soft bi-closure spaces (Čfs bi-csp’s) are defined. The basic properties of Čfs bi-csp’s are studied such as we show from each Čfs bi-csp’s (
Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
This article is devoted to presenting results on invariant approximations over a non-star-shsped weakly compact subset of a complete modular space by introduced a new notion called S-star-shaped with center f: if be a mapping and , . Then the existence of common invariant best approximation is proved for Banach operator pair of mappings by combined the hypotheses with Opial’s condition or demi-closeness condition
In this paper, we give new results and proofs that include the notion of norm attainment set of bounded linear operators on a smooth Banach spaces and using these results to characterize a bounded linear operators on smooth Banach spaces that preserve of approximate - -orthogonality. Noting that this work takes brief sidetrack in terms of approximate - -orthogonality relations characterizations of a smooth Banach spaces.
We can understand interior design as a series of interconnected human principles and goals formed by science and knowledge to build a human product that reveals or gives meaning to things، and this can be presented through ecology as a system concerned with environmental aspects and as part of interior design، seeking to achieve aesthetic and functional values، in an interactive form between spaces The interior and its occupants are within an environmental balance full of life، and the ecological interior design attaches great importance to the embodiment of spiritual aspects in the internal environment، in addition to emphasizing the importance of protecting the environment and preserving resources through saving in its use and usi
... Show MoreIn this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show MoreIn this paper We introduce some new types of almost bi-periodic points in topological bitransfprmation groups and thier effects on some types of minimaliy in topological dynamics