The civil engineering field currently focus on sustainable development. It is important to develop new sustainable and economic generations of concrete, using eco-friendly materials in the construction industry with a fair amount of costs and minimizing the impact upon the environment by reducing CO2 emissions from the cement industry as a whole while still obtaining high cement quality and strength. The main objective of this research is to clarify the mechanical behavior and ability to use Portland limestone cement in producing self compacted concrete, due to the beneficious effec of the limestone cement economically and enviromently. The research investigates the effect of using steel and polymer meshs as reinforcement, where the results showed that the steel meshs had the highest results which indicate that the steel mesh was stronger because it had absorbed more impacting energy till it reached failure. Mechanical tests were conducted to detect the benefits of using such meshs on the concrete mixes.
The research location is the northern part of the Basin of Limboto Lake; the focus of the research is the limestone outcrop with 24 meter thickness in Yosonegoro area. The purpose of the study is to find out facies, standard microfacies and depositional environment on Limboto limestone. The research method carried out consisted of three methods namely the measured section, petrographic analysis and biostratigraphy analysis.
The limestone facies in the Yosonegoro area consist of two facies. Then, based on sedimentary structure, composition, color, precipitation texture, terrestrial origin components and the organism content, the two facies can divided into three different microfacies. Paleobathyme
... Show MoreIn the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-derivative (PID) co
... Show More
In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, industry. This paper introduced the simulated model of a proposed self-balancing platform that described the self–balancing attitude in (X-axis, Y-axis, or both axis) under the influence of road disturbance. To simulate the self-balanced platform's performance during the tilt, an integration between Solidworks, Simscape, and Simulink toolboxes in MATLAB was used. The platform's dynamic model was drawn in SolidWorks and exported as a STEP file used in the Simscape Multibody environment. The system is controlled using the proportional-integral-deriva
... Show MoreLinear and mass attenuation coefficient of reactive powder concrete (RPC) sample ( of compressive strength equal to 70 Mpa) using beta particles and gamma ray with different energies have been calculated as a function of the absorber thickness and energy. The attenuation coefficient were obtained using NaI(Tl) energy selective scintillation counter with 90Sr/90Y beta source having an energy rang from (0.546-2.274) MeV and gamma ray energies (0.569, 0.662, 1.063, 1.17 and 1.33) MeV . The attenuation coefficient usually depends upon the energy of radiations and nature of the material. The result represented in graphical forms. Exponential decay was observed. It is found that the capability of reactive powder concrete to absorber beta particle
... Show MoreMany tools and techniques have been recently adopted to develop construction materials that are less harmful and friendlier to the environment. New products can be achieved through the recycling of waste material. Thus, this study aims to use recycled glass bottles as sustainable materials.
Our challenge is to use nano glass powder by the addition or replacement of the weight of the cement for producing concrete with enhanced strength.
A nano recycled glass p
This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee
... Show MoreThis paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee
... Show MoreRecently, increasing material prices coupled with more acute environmental awareness and the implementation of regulation has driven a strong movement toward the adoption of sustainable construction technology. In the pavement industry, using low temperature asphalt mixes and recycled concrete aggregate are viewed as effective engineering solutions to address the challenges posed by climate change and sustainable development. However, to date, no research has investigated these two factors simultaneously for pavement material. This paper reports on initial work which attempts to address this shortcoming. At first, a novel treatment method is used to improve the quality of recycled concrete coarse aggregates. Thereafter, the treated recycled
... Show More