The acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lower particle size and their low thermal/electrical conductivity. Furthermore, to improve the surface hydrophobic characteristics of acrylic composites, the surface was treated with a dielectric barrier discharge (DBD) plasma jet. The DBD plasma jet treatment significantly enhanced the hydrophobicity of acrylic polymer composites. For example, the WCA of acrylic composites containing 5 wt% silica or cement nanoparticles increased from 35.3° to 55° and 44.7° to 73°, respectively, by plasma treatment performed at an Ar flow rate of 5 L/min and for an exposure interval of 25 s. The DBD plasma jet treatment is an excellent and inexpensive technique for improving the hydrophobic properties of acrylic polymer composites. These findings offer important perspectives on the development of materials coating for technical applications.
The contemporary role of administrative accounting Renewal or threat
A thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.
Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect
... Show MoreIn this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
Abstract: In this research, nanofibers have been prepared by using an electrospinning method. Three types of polymer (PVA, VC, PMMA) have been used with different concentration. The applied voltage and the gap length were changed. It was observed that VC is the best polymer than the other types of polymers.
antimicrobial solutions against Coliforms, E. coli O157: H7, yeasts and molds were evaluated by agar well diffusion method. Chitosan (CH) exhibited best antimicrobial activity against the treated microorganisms at concentration of (5%) with contact time for 6hrs at refrigeration temperature (4ÚC), zones of inhibition for (GA) and (CH) for each solution alone ranging from (0 to 10 mm), chitosan solution (CH) exhibited both antibacterial and antifungal activities, Gum Arabic washing solution showed significant antibacterial activity (P < 0.05) against the microorganisms at concentration (15%), without inhibitory effect against E. coli O157:H7 at concentration (10%), in the current study the results confirmed that (15%) (w/v) of GA and 5%
... Show MoreIn this study, synthesis of polymer Nanocomposites through the blending of prepared polymers with polyvinyl alcohol (a synthetic polymer) or chitosan (a natural polymer) then mixed with nano oxide silica by many steps. The new compound [I] was obtained via reaction of 3,3’-dimethoxybiphenyl-4,4’-diamine as starting material with malic anhydride in DMF then treatment with ammonium persulfate (NH4 )2 S2 O8 (as the initiator) in order to produce polymer [II]. Also, we prepared new polymers [III-V] by using the same starting material (3,3’-dimethoxybiphenyl-4,4’-diamine) with glutaric acid or adipic acid or isophthalic acid in DMF and pyridine. In this study, new polymer blending [VI-IX] and [X-XIII] were synthesized from a prepared pol
... Show MoreSeeds of Nigella sativa were sown in containers containing 15kg Loamy soil. The seeds were divided before sewing into two groups. The first group was soaked with ordinary tap water end the second group was treated with magnetized water for 24hrs. The irrigation process was completed until 75% of capacity field with two types of water (tap water of magnetized water with three replications).The magnetized water was obtained from special electric device designed for this purposeRecorded measurements (plants height, the number of branches/ plant, dry weight ofplant, number of flowers, 1000 seed weight) during the harvest period.Results indicated that the seed group which was treated with magnetized water was more significant than the one which
... Show More