The application of the test case prioritization method is a key part of system testing intended to think it through and sort out the issues early in the development stage. Traditional prioritization techniques frequently fail to take into account the complexities of big-scale test suites, growing systems and time constraints, therefore cannot fully fix this problem. The proposed study here will deal with a meta-heuristic hybrid method that focuses on addressing the challenges of the modern time. The strategy utilizes genetic algorithms alongside a black hole as a means to create a smooth tradeoff between exploring numerous possibilities and exploiting the best one. The proposed hybrid algorithm of genetic black hole (HGBH) uses the capabilities of considering the imperatives such as code coverage, fault finding rate and execution time from search algorithms in our hybrid approach to refine test cases considerations repetitively. The strategy accomplished this by putting experiments on a large-scale project of industrial software developed. The hybrid meta-heuristic technique ends up being better than the routine techniques. It helps in higher code coverage, which, in turn, enables to detect crucial defects at an early stage and also to allocate the testing resources in a better way. In particular, the best APFD value was 0.9321, which was achieved in 6 generations with 4.879 seconds the value to which the computer was run. Besides these, , the approach resulted in the mean value of APFD as 0.9247 and 0.9302 seconds which took from 10.509 seconds to 30.372 seconds. The carried out experiment proves the feasibility of this approach in implementing complex systems and consistently detecting the changes, enabling it to adapt to rapidly changing systems. In the end, this research provides us with a new hybrid meta-heuristic way of test case prioritization and optimization, which, in turn, helps to tackle the obstacles caused by large-scale test cases and constantly changing systems.
The issue of image captioning, which comprises automatic text generation to understand an image’s visual information, has become feasible with the developments in object recognition and image classification. Deep learning has received much interest from the scientific community and can be very useful in real-world applications. The proposed image captioning approach involves the use of Convolution Neural Network (CNN) pre-trained models combined with Long Short Term Memory (LSTM) to generate image captions. The process includes two stages. The first stage entails training the CNN-LSTM models using baseline hyper-parameters and the second stage encompasses training CNN-LSTM models by optimizing and adjusting the hyper-parameters of
... Show MoreWe present a case of congenital of flexor pollicis longus agenesis without thenar hypoplasia in a 12-year-old girl with no history of trauma. Two-staged corrective surgery was planned. In the first stage, the flexor pulley was reconstructed using silicone followed by the second stage 3 months later when flexor pollicis longus reconstruction was performed using tendon transfer of the flexor digitorum superficialis. The patient completed post-operative physiotherapy and the result of the surgical treatment in both functional and cosmetic aspects was, in the authors’ opinion, excellent.
Estimation of mechanical and physical rock properties is an essential issue in applications related to reservoir geomechanics. Carbonate rocks have complex depositional environments and digenetic processes which alter the rock mechanical properties to varying degrees even at a small distance. This study has been conducted on seventeen core plug samples that have been taken from different formations of carbonate reservoirs in the Fauqi oil field (Jeribe, Khasib, and Mishrif formations). While the rock mechanical and petrophysical properties have been measured in the laboratory including the unconfined compressive strength, Young's modulus, bulk density, porosity, compressional and shear -waves, well logs have been used to do a compar
... Show MoreThis study develops a systematic density functional theory alongside on-site Coulomb interaction correction (DFT + U) and ab initio atomistic thermodynamics approachs for ternary (or mixed transitional metal oxides), expressed in three reservoirs. As a case study, among notable multiple metal oxides, synthesized CoCu2O3 exhibits favourable properties towards applications in solar, thermal and catalytic processes. This progressive contribution applies DFT + U and atomistic thermodynamic approaches to examine the structure and relative stability of CoCu2O3 surfaces. Twenty-five surfaces along the [001], [010], [100], [011], [101], [110] and [111] low-Miller-indices, with varying surface-termination configurations were selected in this study.
... Show MoreThe aim of the current research is to study a topic from the Qur’anic topics, few have researched it and realized its content, so people knew it in one name in the Qur’an in another name, and due to the ancientity of the topic and its contemporaneity, I wanted to write about it. The research has an introduction, three demands, and a conclusion with the most important results of the research:
As for the introduction: It was to indicate the importance of the topic and an optional reason for it.
As for the first requirement: it included the definition of reasoning, its divisions, and its characteristics.
As for the second requirement, it was to indicate the meaning, types, and methods of labeling it.
As for the third require
To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreThis research studyies wear rate of composite materials by using Epoxy Resin and Polyurethane Rubber as a matrix of weigt percentage (90:10) (Ep/Pu) and reinforced by PVC fibers and Aluminum fibers two dimension knitted mat with fractional volume(15 %), in different conditions like: lab conditions and after submerge the samples in water for different periods of time. . four kinds of materials were prepared: (Ep+pu), (Ep+Pu+PVC), (Ep+Pu+Al.F), (Ep+Pu+PVC+Al. F) .And the results have shown that the best wear resistance are for the hybrid composite material (Ep + Pu+ PVC + Al. F) and wear rate of all samples increased when it was submerged in water
Researchers have identified and defined β- approach normed space if some conditions are satisfied. In this work, we show that every approach normed space is a normed space.However, the converse is not necessarily true by giving an example. In addition, we define β – normed Banach space, and some examples are given. We also solve some problems. We discuss a finite β-dimensional app-normed space is β-complete and consequent Banach app- space. We explain that every approach normed space is a metric space, but the converse is not true by giving an example. We define β-complete and give some examples and propositions. If we have two normed vector spaces, then we get two properties that are equivalent. We also explain that
... Show More