Many additives are used to improve the performance of cables in terms of increasing their flame retardancy, thermal stability, thermal conductivity, and other characteristics. Unfortunately, most of these additives contain heavy metals. Therefore, the main objective of this study is to introduce a material representing a new generation of environmentally friendly heavy metal-free stabilizers for cable grade poly(vinyl chloride) that can compete with traditional materials in terms of performance and distinctive properties. This unique additive is Oxydtron, a synthetic silicate or simply nanocement. The tests performed are rheological properties represented by a capillary rheometry analysis, limiting oxygen index, and volume resistivity. The most significant improvement in Bagley correction measurements was 14.61%; 18.13%; and 27.20% more than poly(vinyl chloride) basic formulation when using 5wt.% Oxydtron at 160 °C, 170 °C, and 180 °C, respectively. Also, the mean increases in relaxation time were 3.200 times, 8.825 times, and 12.458 times more than poly(vinyl chloride) basic formulation with 1wt.%, 3wt.%, and 5wt.% of Oxydtron, respectively. Furthermore, the Oxydtron lowered the value of the accompanying thermal gradient of the L.O.I test, reducing the heat-affected zone. The best result was with the extrusion processing method due to the uniformity of the processing conditions. However, the thermal gradient analysis showed residual heat stress in the test samples after cutting the burning layer and re-testing the samples again; this causes them to burn faster. This situation requires caution for designs that are exposed to high temperatures without burning. The optimum improvement in volume resistivity value was 14.71% and 38.24% more than poly(vinyl chloride) basic formulation after adding 5wt.% and 7wt.% of Oxydtron, respectively.
Of the importance of the concept of ownership of real estate as the basic basis from which various projects are launched in various economic, tourism, and urban areas .... The need to research the diagnosis of real estate reality went astray in the difficulties, which played a decisive role in the process of urban development.
This leads us to the research problem of the difficulty of implementing urban development plans in many cases due to the absence of a clear methodology for organizing and modernizing the ownership of real estate and its coordination with the management of urban land and to achieve the objective
... Show MoreA novel series of mixed-ligand complexes of the type, [ML 1 (L 2 ) 3 ]Cl x [M = Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiffbase (HL 1 ) as main ligand, nicotinamide (L 2 ) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL 1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR, 1 H-NMR, 13 C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiffbase ligand, HL 1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxy- gen atom
... Show MoreThe current study aimed the syntheses and characterizations of Gold nanoparticles (Au NPs) using a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the
... Show MoreTransition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show MoreThe purpose of the paper is to tind the degree of the approximation of a functions f be bounded , measurable and defined
in interval [a,h]by Bernstein polynomial in LP space 1 $ p < oo by
using Ditzian-Totik modulus of smootlmess and k 1n average modvlus of smoothness.
Transition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6(4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were a
... Show MoreIn this work, the synergistic effect of chlorinated rubber (additive I),with zeolite 3A (additive II), zeolite 4A (additive III), and zeolite 5A (additive IV) in (1:1) weight percentage, on the flammability for unsaturated polyester resin was studied in the weight ratios for (3,7,10,13&15%) by preparing films of (130×130×3) mm in diameters. Three standard test methods used to measure were the flame retardation which are; ASTM: D-2863, ASTM: D- 635& ASTM: D-3014. Results obtained from these tests indicated that all of the additives were effective additive IV has the highest efficiency as a flame retardant.