BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
In order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreOil well drilling fluid rheology, lubricity, swelling, and fluid loss control are all critical factors to take into account before beginning the hole's construction. Drilling fluids can be made smoother, more cost-effective, and more efficient by investigating and evaluating the effects of various nanoparticles including aluminum oxide (Al2O3) and iron oxide (Fe2O3) on their performance. A drilling fluid's performance can be assessed by comparing its baseline characteristics to those of nanoparticle (NPs) enhanced fluids. It was found that the drilling mud contained NPs in concentrations of 0,0.25, 0. 5, 0.75 and 1 g. According to the results, when drilling fluid was used without NPs, the coeff
... Show MoreIn order to select the optimal tracking of fast time variation of multipath fast time variation Rayleigh fading channel, this paper focuses on the recursive least-squares (RLS) and Extended recursive least-squares (E-RLS) algorithms and reaches the conclusion that E-RLS is more feasible according to the comparison output of the simulation program from tracking performance and mean square error over five fast time variation of Rayleigh fading channels and more than one time (send/receive) reach to 100 times to make sure from efficiency of these algorithms.
|
The mechanism of hydrogen (H2) gas sensor in the range of 50-200 ppm of RF-sputtered annealed zinc oxide (ZnO) and without annealing was studied. The X-ray Diffraction( XRD) results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The I–V characteristics of the device (PT/ZnO/Pt) measured at room temperature before and after annealing at 450 oC for4h, from which a linear relationship has been observed. The sensors had a maximum response to H2 at 350 oC for annealing ZnO and showed stable behavior for detecting H2 gases in the range of 50 to 200 ppm. The annealed film exhibited hig |
Rapid and accurate identification of Methicillin Resistant Staphylococcus aureus is essential in limiting the spread of this bacterium. The aim of study is the detection of Methicillin Resistant Staphylococcus aureus (MRSA) and determining their susceptibility to some antimicrobial agent. A total of fifty clinical Staphylococcus aureus, isolated from the nose of health work staff in surgery unit of Kalar general hospital and from ear of patients attended to the same hospital. The susceptibilities of isolates were determined by the disc diffusion method with oxacillin (1 ?g) and cefoxitin (30 ?g), and by the mannitol salt agar supplemented with cefoxitin (MSA-CFOX), susceptibilities of isolates to other antimicrobial agent were determined b
... Show MoreLymphoma is a cancer arising from B or T lymphocytes that are central immune system components. It is one of the three most common cancers encountered in the canine; lymphoma affects middle-aged to older dogs and usually stems from lymphatic tissues, such as lymph nodes, lymphoid tissue, or spleen. Despite the advance in the management of canine lymphoma, a better understanding of the subtype and tumor aggressiveness is still crucial for improved clinical diagnosis to differentiate malignancy from hyperplastic conditions and to improve decision-making around treating and what treatment type to use. This study aimed to evaluate a potential novel biomarker related to iron metabolism,
... Show MoreAdverse drug reactions (ADR) are important information for verifying the view of the patient on a particular drug. Regular user comments and reviews have been considered during the data collection process to extract ADR mentions, when the user reported a side effect after taking a specific medication. In the literature, most researchers focused on machine learning techniques to detect ADR. These methods train the classification model using annotated medical review data. Yet, there are still many challenging issues that face ADR extraction, especially the accuracy of detection. The main aim of this study is to propose LSA with ANN classifiers for ADR detection. The findings show the effectiveness of utilizing LSA with ANN in extracting AD
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show More