Purpose: aims the study to show How to be can to enhance measurement management by incorporating a risk-based approach and the six sigma method into a more thorough assessment of metrological performance. Theoretical framework: Recent literature has recorded good results in analyzing the impact of Six Sigma and risk management on the energy sector (Barrera García et al., 2022) (D'Emilia et al. 2015). However, this research came to validate and emphasize the most comprehensive assessment of metrological performance by integrating Risk management based approach and Six Sigma analysis. Design/methodology/approach: This study was conducted in Iraqi petroleum refining companies. System quality is measured in terms of sigmas, and two indices—one for actualizing metrological risk and another for its management—are assessed. Findings: We find the all dimensions of the six sigma projects implemented facilitate the correction and adaptation of the main tasks aimed at improving the measurement management system. Research, Practical & Social implications: a risk-based approach and the six sigma method are can enhance the measurement management system and collect feedback on its performance. Originality/value: The merge a risk-based approach and the six sigma method its usefulness as a methodological tool for enhancing measurement management has been demonstrated.
|
In this work, an experimental investigation has been done for heat transfer by natural-convection through a horizontal concentric annulus with porous media effects. The porous structure in gap spacing consists of a glass balls and replaced by plastic (PVC) balls with different sizes. The outer surface of outer tube is isothermally cooled while the outer surface of inner tube is heated with constant heat flux condition. The inner tube is heated with different supplied electrical power levels. Four different radius ratios of annulus are used. The effects of porous media material, particles size and annulus radius ratio on heat dissipation in terms of average Nusselt number have been analyzed. |
In this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MoreThis paper analyzes a piled-raft foundation on non-homogeneous soils with variable layer depth percentages. The present work aims to perform a three-dimensional finite element analysis of a piled-raft foundation subjected to vertical load using the PLAXIS 3D software. Parametric analysis was carried out to determine the effect of soil type and initial layer thickness. The parametric study showed that increasing the relative density from 30 % to 80 % of the upper sand layer and the thickness of the first layer has led to an increase in the ultimate load and a decrease in the settlement of piled raft foundations for the cases of sand over weak soil. In clay over weak soil, the ultimate load of the piled raft foundation w
... Show MoreThe high and low water levels in Tigris River threaten the banks of the river. The study area is located on the main stream of Tigris River at Nu’maniyah City and the length of the considered reach is 5.4 km, especially the region from 400 m upstream Nu’maniyah Bridge and downstream of the bridge up to 1250 mwhich increased the risk ofthe problemthat itheading towardsthe streetand causingdanger tonearbyareas.
The aim of this research is to identify the reason of slope collapse and find proper treatments for erosion problem in the river banks with the least cost. The modeling approach consisted of several steps, the first of which is by using “mini” JET (Jet Erosion Test) d
... Show MoreThe control of water represents the safe key for fair and optimal use to protect water resources due to human activities, including untreated wastewater, which is considered a carrier of a large number of antibiotic-resistant bacterial species. This study aimed to investigate the prevalence of antibiotic-resistance to E. coli in Tigris River by the presence of resistance genes for aminoglycoside(qepA( ,quinolone (gyrA), and sulfa drugs( dfr1 ,dfr17) due to the frequent use of antibiotics and their release into wastewater of hospitals. Samples were collected from three sites on Tigris River: S1( station wastewater in Adhamiya), S2 (station wastewater in Baghdad Medical city hospital), S3 (station wastew
... Show Moresensor sampling rate (SSR) may be an effective and crucial field in networked control systems. Changing sensor sampling period after designing the networked control system is a critical matter for the stability of the system. In this article, a wireless networked control system with multi-rate sensor sampling is proposed to control the temperature of a multi-zone greenhouse. Here, a behavior based Mamdany fuzzy system is used in three approaches, first is to design the fuzzy temperature controller, second is to design a fuzzy gain selector and third is to design a fuzzy error handler. The main approach of the control system design is to control the input gain of the fuzzy temperature controller depending on the cur
... Show More
This paper describes DC motor speed control based on optimal Linear Quadratic Regulator (LQR) technique. Controller's objective is to maintain the speed of rotation of the motor shaft with a particular step response.The controller is modeled in MATLAB environment, the simulation results show that the proposed controller gives better performance and less settling time when compared with the traditional PID controller.