Segmentation of urban features is considered a major research challenge in the fields of photogrammetry and remote sensing. However, the dense datasets now readily available through airborne laser scanning (ALS) offer increased potential for 3D object segmentation. Such potential is further augmented by the availability of full-waveform (FWF) ALS data. FWF ALS has demonstrated enhanced performance in segmentation and classification through the additional physical observables which can be provided alongside standard geometric information. However, use of FWF information is not recommended without prior radiometric calibration, taking into account all parameters affecting the backscatter energy. This paper reports the implementation of a radiometric calibration workflow for FWF ALS data, and demonstrates how the resultant FWF information can be used to improve segmentation of an urban area. The developed segmentation algorithm presents a novel approach which uses the calibrated backscatter cross-section as a weighting function to estimate the segmentation similarity measure. The normal vector and the local Euclidian distance are used as criteria to segment the point clouds through a region growing approach. The paper demonstrates the potential to enhance 3D object segmentation in urban areas by integrating the FWF physical backscattered energy alongside geometric information. The method is demonstrated through application to an interest area sampled from a relatively dense FWF ALS dataset. The results are assessed through comparison to those delivered from utilising only geometric information. Validation against a manual segmentation demonstrates a successful automatic implementation, achieving a segmentation accuracy of 82%, and out-performs a purely geometric approach.
The size and the concentration of the gold nanoparticles (GNPs)
synthesized in double distilled deionized water (DDDW) have been
found to be affected by the laser energy and the number of pulses.
The absorption spectra of the nanoparticles DDDW, and the
surface plasmon resonance (SPR) peaks were measured, and found to
be located between (509 and 524)nm using the UV- Vis
spectrophotometer. SPR calculations, images of transmission
electron microscope, and dynamic light scattering (DLS) method
were used to determine the size of GNPs, which found to be ranged
between (3.5 and 27) nm. The concentrations of GNPs in colloidal
solutions found to be ranged between (37 and 142) ppm, and
measured by atomic absorptio
Dental caries (tooth decay) is one of the most prevalent infectious disease and although of multifactorial origin, Streptococcus mutans is considered the principal pathogen in its development (i.e. bacterial processes damage hard tooth structure (enamel, dentine and cementum), producing dental cavities (holes in the teeth). The bactericidal properties of the Nd:YAG laser has been researched analyzing its use in caries prevention and bacterial reduction. One hundred twenty five samples were collected from carious teeth and isolated bacteria were diagnosed using microscopic examination, culture, biochemical tests, and Api 20 strep system. The results of this study showed that a noticeable decrease in the viability of Streptococcus mutans w
... Show MoreBackground: One common undesirable side effect of orthodontic treatment with fixed appliances is the development of incipient caries lesions around brackets, particularly in patients with poor oral hygiene. Different methods have been used to prevent demineralization; the recent effort to improve the resistance against the demineralization is by the application of lasers. Materials and method: Thirty human premolars extracted for orthodontic purposes were used to test the effect of two energy level of ER-YAG laser on enamel resistance to demineralization. The brackets were bonded on the teeth and all the labial surface excluding 2 mm area gingival to the brackets were painted with acid resistance varnish. Three groups were generated. The fi
... Show MoreTin oxide films (SnO2) of thickness (1 ?m) are prepared on glass substrate by post oxidation of metal films technique. Films were irradiated with Nd:YAG double frequency laser of wavelength (532 nm) pulses of three energies (100, 500, 1000) mJ. The optical absorption, transmission, reflectance, refractive index and optical conductivity of these films are investigated in the UV-Vis region (200-900) nm. It was found that the average transmittance of the films is around (80%) at wavelength (550 nm) and showed high transmission (? 90 %) in the visible and near infrared region. The absorption edge shifts towards higher energies, which is due to the Moss-Burstien effect and it lies at (4 eV). The optical band gap increased with increasing of ene
... Show MoreIn this research prepare membranes pure silicon carbide (SiC) as well as gas Alloy (ammonia) and using a laser was leaked membrane of glass flooring. To Drasesh optical properties of membranes prepared depending on the technique (Swanepoel) and Adhrt results obtained in general increased permeability pure silicon membranes
Background: This study aimed to apply a high-power pulsed alexandrite laser in vitro, the researchers tested different exposure periods, pulse lengths, and laser fluencies to see which dosage was most successful against S. aureus bacteria, which had developed resistance to many antibiotics. Method: Three bacteria samples were exposed to laser beams for 30 seconds with a 5ms pulse duration and a laser fluency of 5J/cm2. The process was repeated with laser fluencies of 10, 15, and 20. Results: The study was carried out by using different doses of Alexandrite laser. Results: There are significant differences (p = 0.05) in the mean number of bacteria colonies exposed for 30 and 60 seconds at any laser fluencies utilized in the present i
... Show MoreThis work aimed to investigate the effect of Diode laser 805 nm on plasmid DNA and RNA
contents of some Gram negative bacteria represented by Escherichia coli and Proteus mirabilis isolates
.Plasmid extraction was done using two methods (Salting out and CTAB method).Different powers and
pulse repetition rates for 805 nm Diode Laser were used to study this effect. Results revealed that the
plasmid profile of the two species were highly affected using (2, 3) W at different frequencies including
5and 10 kHz as compared with 1 kHz while plasmids were gradually disappeared at 1W, 10 kHz. In the
same time the shining of RNA was also decreased gradually then disappeared with increasing powers
especially at 2W and 10 kHz cau
A design of a Fabry -Perot interferometer system was constructed
to determine the precise value of the wavelength which is required in spectml studies depending on varying medium pressure where the refractive index was a function of pressure at a constant distance between the two mirrors by using a Hc-Ne laser (632.8) tun as a coherent source .
The (fmee) (t) and the coefficient of finesses (F) and the visbility
of the fringes (V) has been calculated . Image processing \\•as used and its result can be relied on verifying 
... Show More