Segmentation of urban features is considered a major research challenge in the fields of photogrammetry and remote sensing. However, the dense datasets now readily available through airborne laser scanning (ALS) offer increased potential for 3D object segmentation. Such potential is further augmented by the availability of full-waveform (FWF) ALS data. FWF ALS has demonstrated enhanced performance in segmentation and classification through the additional physical observables which can be provided alongside standard geometric information. However, use of FWF information is not recommended without prior radiometric calibration, taking into account all parameters affecting the backscatter energy. This paper reports the implementation of a radiometric calibration workflow for FWF ALS data, and demonstrates how the resultant FWF information can be used to improve segmentation of an urban area. The developed segmentation algorithm presents a novel approach which uses the calibrated backscatter cross-section as a weighting function to estimate the segmentation similarity measure. The normal vector and the local Euclidian distance are used as criteria to segment the point clouds through a region growing approach. The paper demonstrates the potential to enhance 3D object segmentation in urban areas by integrating the FWF physical backscattered energy alongside geometric information. The method is demonstrated through application to an interest area sampled from a relatively dense FWF ALS dataset. The results are assessed through comparison to those delivered from utilising only geometric information. Validation against a manual segmentation demonstrates a successful automatic implementation, achieving a segmentation accuracy of 82%, and out-performs a purely geometric approach.
Information hiding strategies have recently gained popularity in a variety of fields. Digital audio, video, and images are increasingly being labelled with distinct but undetectable marks that may contain a hidden copyright notice or serial number, or even directly help to prevent unauthorized duplication. This approach is extended to medical images by hiding secret information in them using the structure of a different file format. The hidden information may be related to the patient. In this paper, a method for hiding secret information in DICOM images is proposed based on Discrete Wavelet Transform (DWT). Firstly. segmented all slices of a 3D-image into a specific block size and collecting the host image depend on a generated key
... Show MoreThe general objective of surface shape descriptors techniques is to categorize several surface shapes from collection data. Gaussian (K) and Mean (H) curvatures are the most broadly utilized indicators for surface shape characterization in collection image analysis. This paper explains the details of some descriptions (K and H), The discriminating power of 3D descriptors taken away from 3D surfaces (faces) is analyzed and present the experiment results of applying these descriptions on 3D face (with polygon mesh and point cloud representations). The results shows that Gaussian and Mean curvatures are important to discover unique points on the 3d surface (face) and the experiment result shows that these curvatures are very useful for some
... Show MoreIn this study, an approach inspired by a standardized calibration method was used to test a laser distance meter (LDM). A laser distance sensor (LDS) was tested with respect to an LDM and then a statistical indicator explained that the former functions in a similar manner as the latter. Also, regression terms were used to estimate the additive error and scale the correction of the sensors. The specified distance was divided into several parts with percent of longest one and observed using two sensors, left and right. These sensors were evaluated by using the regression between the measured and the reference values. The results were computed using MINITAB 17 package software and excel office package. The accuracy of the results in this wo
... Show MoreIn this paper, a fusion of K models of full-rank weighted nonnegative tensor factor two-dimensional deconvolution (K-wNTF2D) is proposed to separate the acoustic sources that have been mixed in an underdetermined reverberant environment. The model is adapted in an unsupervised manner under the hybrid framework of the generalized expectation maximization and multiplicative update algorithms. The derivation of the algorithm and the development of proposed full-rank K-wNTF2D will be shown. The algorithm also encodes a set of variable sparsity parameters derived from Gibbs distribution into the K-wNTF2D model. This optimizes each sub-model in K-wNTF2D with the required sparsity to model the time-varying variances of the sources in the s
... Show MoreIt is well known that the wreath product is the endmorphism monoid of a free S-act with n-generators. If S is a trivial semigroup then is isomorphic to . The extension for to where is an independent algebra has been investigated. In particular, we consider is to be , where is a free left S-act of n-generators. The eventual goal of this paper is to show that is an endomorphism monoid of a free left S-act of n-generators and to prove that is embedded in the wreath product .
Developing an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal
... Show MoreSegmentation is one of the most computer vision processes importance, it aims to understand the image contents by partitioning it into segments that are more meaningful and easier to analyze. However, this process comes with a set of challenges including image skew, noise, and object clipping. In this paper, a solution is proposed to address the challenges encountered when using Optical Character Recognition to recognize mathematical expressions. The proposed method involves three stages: pre-processing, segmentation, and post-processing. During pre-processing, the mathematical expression image is transformed into a binary image, noise reduction techniques are applied, image component discontinuities are resolved, and skew corre
... Show MoreLand Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that
... Show MoreThis research represents a 3D seismic structural study for 602.62 Km2 of Dujaila
Oil Field which is located 55 Km Northwest of Mysan province and 20 Km Southwest
of Ali-AlSharki region within unstable Mesopotamian basin.
Synthetic traces are prepared by using available data of two wells (Du-1, Du-2), in
order to define and pick the reflectors. Two reflectors are picked that represent the top
and bottom of Mishrif Formation, in addition to five units within this Formation are
picked, they named Units 1, 2, 3, 4, and 5.
Time maps for the top and bottom of Mishrif reflectors are drawn to get the
structural picture, these maps show general dip of layers toward NE, and thus, there
are two enclosure domes in the midd
Variations in perspective, illumination, motion blur, and weatherworn degeneration of signs may all be essential factors in road-sign identification. The current research purpose is to evaluate the effectiveness of the image processing technique in detecting road signs as well as to find the appropriate threshold value range for doing so. The efficiency of the cascade object detector in detecting road signs was tested under variations of speed and threshold values. The suggested system involved using video data to calculate the number of frames per second and creating an output file that contains the specified targets with their labels to use later in the final process (i.e., training stage). In the current research, two videos
... Show More