The high viscosity of heavy oil is a crucial factor that strongly affects its up-stream recovering, down-stream surface transporting and refining processes. Economical methods for recovering the heavy oil and reducing is very important and related to capital and/or operating cost. This research studies the treatment of Iraqi heavy crude oil, which characterize with high viscosity and low API which makes transportation of heavy crude oil a difficult mission, needs for treatment to reduce viscosity for facilitating transportation and processing. Iraqi heavy crude oil was used Sharqi Baghdad, which obtained from Baghdad east oil fields with API 22.2º.Many kinds of additives were used to reduce the viscosity, experiments were performed on the heavy oil sample using different solvents (Ethanol, n-Propanol and methyl ethyl ketone (MEK)). Among all the types used, the MEK was found most efficient viscosity reducer of heavy crude oil, the maximum viscosity reduction reached to 3.78 cSt at 75oC and 26 API at 25oC while the other solvents for n-Propanol 5.85 cSt at 75oC and 24.61 API at 25oC while for ethanol 5.96 cSt at 75oC and 27 API at 27oC
For the most reliable and reproducible results for calibration or general testing purposes of two immiscible liquids, such as water in engine oil, good emulsification is vital. This study explores the impact of emulsion quality on the Fourier transform infrared (FT-IR) spectroscopy calibration standards for measuring water contamination in used or in-service engine oil, in an attempt to strengthen the specific guidelines of ASTM International standards for sample preparation. By using different emulsification techniques and readily available laboratory equipment, this work is an attempt to establish the ideal sample preparation technique for reliability, repeatability, and reproducibility for FT-IR analysis while still considering t
... Show MoreSamples of tea leaves (Green tea, Gugarate tea and Black tea used commonly in Iraq) are dried, grinded, pressed and submitted for the elemental analysis by x-ray fluorescence technique (XRF). The concentrations of major, minor and trace elements are determined. The major elements were Na, Mg, Al, K, Si, Ca, Mn, Fe, S and P. Of these elements, Ca, concentration in Gugarate tea leaves is three times, it's level in the other types of tea. Titanium, Cl, Rb and Sr are found as minor elements, while other elements such as Cu, Zn, V, Cr, Co, ...etc are found as trace elements. Of these trace elements considerable concentration values are found for some toxic elements Hg, Cd, Pb and As. Green tea contains 1.1 ppm Hg and 4.4 ppm Pb. Gugarate tea
... Show MoreIt has been a well-known practice to use seeds and the essential oil of Carum copticum as a strongly antiseptic , antispasmodic , aromatic , bitter , diaphoretic , digestive , diuretic , expectorant and tonic. Also used for cure influenza, asthma, and rheumatoid arthritis. To our knowledge it will be the first time to use the seeds of this herb as a urinary tract stone lithotripsy.This research aimed to the use of these seeds as a lithotripsian against different types of urinary stones and determine the efficiency of these preparation against which types of stone.A liquid solution was prepared from dissolving the seeds powder in cow milk and then concentration this prep
... Show MoreExperimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
The increasing use of polymeric materials in the daily life, leads to challenges in the processing industry to deliver high performance materials with affordable terms. However, new processing techniques lead to high costs. In order to reduce processing costs it is necessary to understand the non-Newtonian behavior of the polymers in their molten state to be able to simulate the processes before the construction of the plants starts. Here the shear thinning behavior of the viscosity of polymeric melts is essential. Thus, this paper deals with the experimental investigation of the thermo-rheological behavior of the viscosity of one of the most used polymers (Polypropylene) over a wide range of temperatures and shear rates. Furthermo
... Show MoreBreast cancer (BC) is the most commonly diagnosed cancer in women. The metabolism of iron is closely regulated by hepcidin which exerts its action by interacting with a ferroportin.
The aim of the present study was to assess the alterations in the levels of some serum biomarkers that have a role in iron homeostasis (hepcidin and ferroportin) in addition to hematological parameters (hemoglobin, leukocyte and platelets count) in different stages of BC.
This study included 66 women with BC. The patients were categorized as follows : group 1 includes :22 patients with stage I disease ,group 2 includes: 22 patients with stage II disease ,and group 3 include: 22 patients with stage III disease .Group 4 includes :22 appare
... Show MoreIn this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreReducing the drag force has become one of the most important concerns in the automotive industry. This study concentrated on reducing drag through use of some external modifications of passive flow control, such as vortex generators, rear under body diffuser slices and a rear wing spoiler. The study was performed at inlet velocity (V=10,20,30,40 m/s) which correspond to an incompressible car model length Reynolds numbers (Re=2.62×105, 5.23×105, 7.85×105 and 10.46×105), respectively and we studied their effect on the drag force. We also present a theoretical study finite volume method (FVM) of solvi