We report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker human epidermal growth factor receptor 2 (HER2), and zinc(II) protoporphyrin IX (ZnPP) to combine imaging, targeting and therapy within one nanostructure. Colloidal PbS QDs were synthesized in aqueous solution with a nanocrystal diameter of ∼5 nm and photoluminescence emission in the near infrared wavelength range. The ZHER2:432 affibody, mutated through the introduction of two cysteine residues at the C-terminus (Afb2C), was used as capping ligand to form Afb2C-PbS QDs that have a high binding affinity for HER2, which is overexpressed in several types of cancer including breast cancer. Afb2C-PbS QDs were further modified by conjugation with ZnPP, which acts as an anticancer agent. The biological activity of these QDs was tested against SKBR3 (HER2-positive) and MDA-MB-231 (HER2-normal) breast cancer cells, with results showing that ZnPP-Afb2C-functionalized PbS QDs were successfully targeted to the HER2-overexpressing cancer cells and induced cell apoptosis thanks to the conjugation with ZnPP. These results expand the use of the QD nanoplatform with the formulation of novel nanomaterials for targeted delivery and combined imaging and therapy via direct surface-protein interaction.
Inthisstudy,FourierTransformInfraredSpectrophotometry(FTIR),XRay Diffraction(XRD)andlossonignition(LOI),comparativelyemployedtoprovideaquick,relativelyinexpensiveandefficientmethodforidentifyingandquantifyingcalcitecontentofphosphateoresamplestakenfromAkashatsiteinIraq.Acomprehensivespectroscopicstudyofphosphate-calcitesystemwasreportedfirstintheMid-IRspectra(4004000cm-1)usingShimadzuIRAffinity-1,fordifferentcutsofphosphatefieldgradeswithsamplesbeneficiatedusingcalcinationandleachingwithorganicacidatdifferenttemperatures.Thenusingtheresultedspectratocreateacalibrationcurverelatesmaterialconcentrationstotheintensity(peaks)ofFTIRabsorbanceandappliesthiscalibrationtospecifyphosphate-calcitecontentinIraqicalcareousphosphateore.Theirpeakswereass
... Show MoreMn2+ and Ce3+ Doped ZnS nanocrystals were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of Mn2+ and Ce3+ Doped ZnS P nanocrystals were zinc acetate as zinc source, thioacetamide as a sulfur source, manganese chloride and Cerium chloride as manganese and cerium sources respectively (R & M Chemical) and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The nanocrystals of Mn2+ and Ce3+ Doped ZnS P with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by field effect scanning electron microscopy (FESEM). The composition of the samples is analyzed by EDS. The s
... Show MoreIn this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.
Nanoencapsulation, employing safe materials, holds substantial promise for enhancing bioactive compounds’ delivery, stability, and bioactivity. In this study, we present an innovative and safe methodology for augmenting the incorporation of the anticancer agent, curcumin, thereby inducing apoptosis by downregulating miR20a and miR21 expression. Our established methodology introduces three pivotal elements that, to our knowledge, have not undergone formal validation: (1) Novel formulation: We introduce a unique formula for curcumin incorporation. (2) Biocompatibility and biodegradability: our formulation exclusively consists of biocompatible and biodegradable constituents, ensuring t
Background: Inflammatory bowel disease (IBD) is a collection of chronic, recurrent inflammatory illnesses of the gastrointestinal system, including Crohn's disease (CD). Infliximab is one of the biological medications used to treat CD. Therapeutic drug monitoring has evolved as a treatment in IBD, aiming to optimize benefit while meeting more demanding, objective end criteria. Objective: To determine the achievement of target trough level (TL), develop anti-drug antibodies (ADAs) to infliximab, assess response to therapy, and study TL relations with different variables. Methods: The present study was cross-sectional and conducted from May 2022 to November 2022. It included 40 CD patients allotted into 2 groups: group 1 patients ach
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
In this paper, a design of the broadband thin metamaterial absorber (MMA) is presented. Compared with the previously reported metamaterial absorbers, the proposed structure provides a wide bandwidth with a compatible overall size. The designed absorber consists of a combination of octagon disk and split octagon resonator to provide a wide bandwidth over the Ku and K bands' frequency range. Cheap FR-4 material is chosen to be a substate of the proposed absorber with 1.6 thicknesses and 6.5×6.5 overall unit cell size. CST Studio Suite was used for the simulation of the proposed absorber. The proposed absorber provides a wide absorption bandwidth of 14.4 GHz over a frequency range of 12.8-27.5 GHz with more than %90 absorp
... Show More