Preferred Language
Articles
/
jBZerIoBVTCNdQwCnaJd
BotDetectorFW: an optimized botnet detection framework based on five features-distance measures supported by comparisons of four machine learning classifiers using CICIDS2017 dataset
...Show More Authors

<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver &amp; kroeber, overlap, and pearson correlation) using C#, followed by selecting the best N features used as input into four classifier algorithms evaluated using machine learning (WEKA); multilayerperceptron, JRip, IBK, and random forest. In BotDetectorFW, the thoughtful and diligent cleaning of the dataset within the preprocessing stage beside the normalization, binary clustering of its features, followed by the adapting of feature selection based on suitable feature distance techniques, and finalized by testing of selected classification algorithms. All together contributed in satisfying the high-performance metrics using fewer features number (8 features as a minimum) compared to and outperforms other methods found in the literature that adopted (10 features or higher) using the same dataset. Furthermore, the results and performance evaluation of BotDetectorFM shows a competitive impact in terms of classification accuracy (ACC), precision (Pr), recall (Rc), and f-measure (F1) metrics.</span></p>

Scopus Crossref
View Publication
Publication Date
Mon Oct 05 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval

Publication Date
Fri May 01 2020
Journal Name
International Journal Of Advanced Science And Technology
Improved Merging Multi Convolutional Neural Networks Framework of Image Indexing and Retrieval
...Show More Authors

Background/Objectives: The purpose of current research aims to a modified image representation framework for Content-Based Image Retrieval (CBIR) through gray scale input image, Zernike Moments (ZMs) properties, Local Binary Pattern (LBP), Y Color Space, Slantlet Transform (SLT), and Discrete Wavelet Transform (DWT). Methods/Statistical analysis: This study surveyed and analysed three standard datasets WANG V1.0, WANG V2.0, and Caltech 101. The features an image of objects in this sets that belong to 101 classes-with approximately 40-800 images for every category. The suggested infrastructure within the study seeks to present a description and operationalization of the CBIR system through automated attribute extraction system premised on CN

... Show More
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Analyzing impact of competitive dimensions on the efficiency of e-learning: دراسه استطلاعيه
...Show More Authors

The aim of this research is to diagnose the impact of competitive dimensions represented by quality, cost, time, flexibility on the efficiency of e-learning, The research adopted the descriptive analytical method by identifying the impact of these dimensions on the efficiency of e-learning, as well as the use of the statistical method for the purpose of eliciting results. The research concluded that there is an impact of the competitive dimensions on the efficiency of e-learning, as it has been proven that the special models for each of the research hypotheses are statistically significant and at a level of significance of 5%, and that each of these dimensions has a positive impact on the dependent variable, and the research recommended

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 29 2024
Journal Name
Journal Of The College Of Basic Education
Detection Of Biofilm Formation By Beta- Lactam Resistance Klebsiella Pneumoniae Isolated From Clinical Specimens And Aquatic Samples
...Show More Authors

Preview PDF
Publication Date
Sun Dec 25 2022
Journal Name
Iraqi Journal Of Pharmaceutical Sciences ( P-issn 1683 - 3597 E-issn 2521 - 3512)
Detection of Epicatechin in Camellia sinensis Leaves by Thin Layer Chromatography and High Performance Liquid Chromatography Techniques
...Show More Authors

    The current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method) involved using three different solvents which are  absolute ethanol, 50% aqueous ethanol and water  for both extraction methods using room temperature and direct heat respectively. Crude extracts of two tea samples that obtained from two methods were fractionated by using two solvents with different polarity (chloroform and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sat Dec 03 2011
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Detection of shoreline change in AL-Thirthar Lake using remotely sensed imagery and topography map
...Show More Authors

Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Design and construction of anair pollution detection system using a laser beam and absorption spectroscopy
...Show More Authors

Air pollution is one of the important problems facing Iraq. Air pollution is the result of uncontrolled emissions from factories, car exhaust electric generators, and oil refineries and often reaches unacceptable limits by international standards. These pollutants can greatly affect human health and regular population activities. For this reason, there is an urgent need for effective devices to monitor the molecular concentration of air pollutants in cities and urban areas. In this research, an optical system has been built consisting of aHelium-Neonlaser,5mWand at 632.8 nm, a glass cell with a defined size, and a power meter(Gentec-E-model: uno) where a scattering of the laser beam occurs due to air pollution. Two pollutants were examin

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (1)
Scopus Crossref
Publication Date
Thu Jun 10 2010
Journal Name
Iraqi Journal Of Laser
Experimental Investigation of a Laser Wireless Video Communication System Using Intensity Modulated /Direct Detection Technique
...Show More Authors

In this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.

View Publication Preview PDF
Publication Date
Tue Apr 01 2025
Journal Name
Mesopotamian Journal Of Cybersecurity
The Impact of Feature Importance on Spoofing Attack Detection in IoT Environment
...Show More Authors

The Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jul 15 2017
Journal Name
8th International Conference On Agricultural, Environment, Biology And Medical Sciences
Anatomical features of (Eichhornia crassipes (Mart.) Solms) growing in Iraq
...Show More Authors

Eichhornia crassipes (Mart.) Solms or Water hyacinth is a fertile floating aquatic widespread in worldwide. The form of plants and the anatomy parts of this plant were studied. The most important feature was obvious the air chamber with intercellular spaces by amazing arrangement. As well can notice aerenchyma tissue allow the parts of plants floated on the surface of water located in the ground meristem of root, petiole and in the mesophyll of leaves also presence of two type of crystals raphides and styloid crystals was noted of various member in the plant in addition appear astrosclereids around the air chambers, to support the plant parts from the unsuitable environmental conditions such as the speed of water flow or floods or high leve

... Show More