<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation) using C#, followed by selecting the best N features used as input into four classifier algorithms evaluated using machine learning (WEKA); multilayerperceptron, JRip, IBK, and random forest. In BotDetectorFW, the thoughtful and diligent cleaning of the dataset within the preprocessing stage beside the normalization, binary clustering of its features, followed by the adapting of feature selection based on suitable feature distance techniques, and finalized by testing of selected classification algorithms. All together contributed in satisfying the high-performance metrics using fewer features number (8 features as a minimum) compared to and outperforms other methods found in the literature that adopted (10 features or higher) using the same dataset. Furthermore, the results and performance evaluation of BotDetectorFM shows a competitive impact in terms of classification accuracy (ACC), precision (Pr), recall (Rc), and f-measure (F1) metrics.</span></p>
In this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo
... Show MoreIn this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.
So, this study aimed at testing the system performance at poor s
... Show MoreComposite materials are widely used in the engineered assets as aerospace structures, marine and air navigation owing to their high strength/weight ratios. Detection and identification of damage in the composite structures are considered as an important part of monitoring and repairing of structural systems during the service to avoid instantaneous failure. Effective cost and reliability are essential during the process of detecting. The Lamb wave method is an effective and sensitive technique to tiny damage and can be applied for structural health monitoring using low energy sensors; it can provide good information about the condition of the structure during its operation by analyzing the propagation of the wave in the
... Show More
This study aims to identify maternal death cases caused by Coronavirus infection 2019 pneumonia, including disease progression, fetal consequences, and the fatality cause.
Patients and methodology: A retrospective case collection of Iraqi pregnant women in their second and third trimesters diagnosed with COVID-19 pneumonia and died due to it.
The four cases were all of a young age, had a brief complaint period, and had no comorbidities. Fever, dyspnea, and fatigue were the most common symptoms. Hypoxia was present in all cases and was the cause of mortality in three cases, with thromboembolism being a potential cause in the fourth. Prelabour membrane breakup, fetal growth restriction, and fetal death are al
... Show MoreThe solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was benef
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
An Auto Crop method is used for detection and extraction signature, logo and stamp from the document image. This method improves the performance of security system based on signature, logo and stamp images as well as it is extracted images from the original document image and keeping the content information of cropped images. An Auto Crop method reduces the time cost associated with document contents recognition. This method consists of preprocessing, feature extraction and classification. The HSL color space is used to extract color features from cropped image. The k-Nearest Neighbors (KNN) classifier is used for classification.