Preferred Language
Articles
/
jBZWTogBVTCNdQwCtHa_
Experimental and Numerical Behavior of Encased Pultruded GFRP Beams under Elevated and Ambient Temperatures
...Show More Authors

In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners, and both enhanced the load-carrying capacities of the encased beams by 100.6%, 97.3%, and 130.8%, respectively. Comparisons between the burned and unburned peer beams were presented with losses in the load-carrying capacity of the burned beams. These losses were the highest in the cases of shear connectors and web stiffeners due to the obtained severe damage, which led to more reductions in the residual behavior of the burned beams. Numerical analyses were performed using the general-purpose finite element (FE) ABAQUS package to conduct a parametric study. The investigated parameters included the effect of the exposure duration and the temperature level. The results of the FE analysis showed good agreement with the experimental results. Additional reductions in the residual capacities of the fire-damaged beams were observed due to exposure to longer fire durations. The improvements in the beam capacities due to using shear connectors and web stiffeners relative to the reference beams under the same exposure time decreased as the exposure duration increased. Furthermore, increasing the temperature to 700 °C, 800 °C, 900 °C, and 950 °C caused reductions in the residual capacities by about 25%, 45%, 70%, and 80%, respectively, for the encased beams in comparison to their peers at ambient temperature.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri May 01 2020
Journal Name
Civil Engineering Journal
Post-Fire Behavior of Post-Tensioned Segmental Concrete Beams under Monotonic Static Loading
...Show More Authors

This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Civil Engineering Journal
Post-Fire Behavior of Post-Tensioned Segmental Concrete Beams under Monotonic Static Loading
...Show More Authors

This paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,

... Show More
Crossref (1)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Experimental Behavior of Steel-Concrete-Steel Sandwich Beams with Truss Configuration of Shear Connectors
...Show More Authors

This paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of The Mechanical Behavior Of Materials
Performance of doubly reinforced concrete beams with GFRP bars
...Show More Authors
Abstract<p>The study focused on examining the behavior of six concrete beams that were reinforced with glass fiber-reinforced polymer (GFRP) bars to evaluate their performance in terms of their load-carrying capacity, deflection, and other mechanical properties. The experimental investigation would provide insights into the feasibility and effectiveness of GFRP bars as an alternative to traditional reinforcement materials like steel bars in concrete structures. The GFRP bars were used in both the longitudinal and transverse directions. Each beam in the study shared the following specifications: an overall length of 2,400 mm, a clear span of 2,100 mm, and a rectangular cross-section measuring</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Behavior of Laced Reinforced Concrete One Way Slab under Static Load
...Show More Authors

Test results of eight reinforced concrete one way slab with lacing reinforcement are reported. The tests were designed to study the effect of the lacing reinforcement on the flexural behavior of one way slabs. The test parameters were the lacing steel ratio, flexural steel ratio and span to the effective depth ratio. One specimen had no lacing reinforcement and the remaining seven had various percentages of lacing and flexural steel ratios. All specimens were cast with normal density concrete of approximately 30 MPa compressive strength. The specimens were tested under two equal line loads applied statically at a thirds part (four point bending test) up to failure. Three percentage of lacing and flexural steel ratios wer

... Show More
View Publication Preview PDF
Publication Date
Fri Nov 01 2024
Journal Name
Heliyon
Strength and Deformation of Encased Concrete Columns by I- Section Steel and I- Section GFRP Subjected to Different Load Conditions
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology &amp; Applied Science Research
Behavior of RC Beams Strengthened with NSM-CFRP Strips Subjected to Fire Exposure: A Numerical Study
...Show More Authors

The use of Near-Surface Mounted (NSM) Carbon-Fiber-Reinforced Polymer (CFRP) strips is an efficient technology for increasing flexural and shear strength or for repairing damaged Reinforced Concrete (RC) members. This strengthening method is a promising technology. However, the thin layer of concrete covering the NSM-CFRP strips is not adequate to resist heat effect when directly exposed to a fire or at a high temperature. There is clear evidence that the strength and stiffness of CFRPs severely deteriorate at high temperatures. Therefore, in terms of fire resistance, the NSM technique has a significant defect. Thus, it is very important to develop a set of efficient fire protection systems to overcome these disadvantages. This pape

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Applied Research Journal
Experimental Study of the Behavior of Composite Concrete Castellated Steel Beams Subjected to Pure Bending
...Show More Authors

The aim of this study is to investigate the behavior of composite castellated beam in which the concrete slab and steel beam connected together with headed studs shear connectors. Four simply supported composite beams with various degree of castellation were tested under two point static loads. One of these beams was built up using standard steel beam, i.e. without web openings, to be a reference beam. The other three beams were fabricated from the same steel I-section with various three castellation ratios, (25, 35, and 45) %. In all beams the concrete slab has the same section and properties. Deflection at mid span of all beams was measured at each 10 kN load increment. The test results show that the castellation process leads to

... Show More
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of Temperatures Distribution and Residual Stresses of High Melting Temperature Polymer
...Show More Authors

This work predicts the effect of thermal load distribution in polymer melt inside a mold and a die during injection and extrusion processes respectively on the structure properties of final product. Transient thermal and structure models of solidification process for polycarbonate polymer melt in a steel mold and die are studied in this research. Thermal solution obtained according to solidify the melt from 300 to 30Cand Biot number of 16 and 112 respectively for the mold and from 300 to 30 Cand Biot number of 16 for die. Thermal conductivity, and shear and Young Modulus of polycarbonate are temperature depending. Bonded contact between the polycarbonate and the steel surfaces is suggested to transfer the thermal load. The temperat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Experimental Study for Materials Prosthetic above Knee Socket under Tensile or Fatigue Stress with Varying Temperatures Effect
...Show More Authors

The residual limb within the prosthesis, is often subjected to tensile or fatigue stress with varying temperatures. The fatigue stress and temperatures difference which faced by amputee during his daily activities will produces an environmental media for growth of fungi and bacteria in addition to the damage that occurs in the prosthesis which minimizingthe life of the prosthetic limb and causing disconfirm feeling for the amputee.

In this paper, a mechanical and thermal properties of composite materials prosthetic socket made of different lamination for perlon/fiber glass/perlon, are calculated by using tesile test device under varying temperatures ( from 20oC to 60oC), also in this paper a device for measuring rotational bendin

... Show More
View Publication Preview PDF
Crossref (3)
Crossref