In this research, experimental and numerical studies were carried out to investigate the performance of encased glass-fiber-reinforced polymer (GFRP) beams under fire. The test specimens were divided into two peer groups to be tested under the effect of ambient and elevated temperatures. The first group was statically tested to investigate the monotonic behavior of the specimens. The second group was exposed to fire loading first and then statically tested to explore the residual behavior of the burned specimens. Adding shear connectors and web stiffeners to the GFRP beam was the main parameter in this investigation. Moreover, service loads were applied to the tested beams during the fire. Utilizing shear connectors, web stiffeners, and both enhanced the load-carrying capacities of the encased beams by 100.6%, 97.3%, and 130.8%, respectively. Comparisons between the burned and unburned peer beams were presented with losses in the load-carrying capacity of the burned beams. These losses were the highest in the cases of shear connectors and web stiffeners due to the obtained severe damage, which led to more reductions in the residual behavior of the burned beams. Numerical analyses were performed using the general-purpose finite element (FE) ABAQUS package to conduct a parametric study. The investigated parameters included the effect of the exposure duration and the temperature level. The results of the FE analysis showed good agreement with the experimental results. Additional reductions in the residual capacities of the fire-damaged beams were observed due to exposure to longer fire durations. The improvements in the beam capacities due to using shear connectors and web stiffeners relative to the reference beams under the same exposure time decreased as the exposure duration increased. Furthermore, increasing the temperature to 700 °C, 800 °C, 900 °C, and 950 °C caused reductions in the residual capacities by about 25%, 45%, 70%, and 80%, respectively, for the encased beams in comparison to their peers at ambient temperature.
Many of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show MoreThe purpose of this paper is to gain a good understanding about wake region behind the car body due to the aerodynamic effect when the air flows over the road vehicle during its movement. The main goal of this study is to discuss the effect of the geometry on the wake region and the aerodynamic drag coefficient. Results will be achieved by using two different shapes, which are the fastback and the notchback. The study will be implemented by the Computational Fluid Dynamic (CFD) by using STAR-CCM+® software for the simulation. This study investigates the steady turbulent flow using k-epsilon turbulence model. The results obtained from the simulation show that the region of the air separation behind the vehicle
... Show MoreThe research aims to explain the role of the flexible budget in assessing the feedback resulting from deviations by comparing the actual results with the planned performance in light of the economic crisis that the world witnessed during the spread of Corona disease. As most companies, including the Electronic Industries Company, face the problem of controlling production costs and are trying hard to reduce these costs to the lowest level starting from measuring these costs and allocating them and distributing them to products. This helps in controlling deviations and thus the flexible budget becomes a tool that helps in controlling elements Costs
in this paper fourth order kutta method has been used to find the numerical solution for different types of first liner
In this study, the performance of the adaptive optics (AO) system was analyzed through a numerical computer simulation implemented in MATLAB. Making a phase screen involved turning computer-generated random numbers into two-dimensional arrays of phase values on a sample point grid with matching statistics. Von Karman turbulence was created depending on the power spectral density. Several simulated point spread functions (PSFs) and modulation transfer functions (MTFs) for different values of the Fried coherent diameter (ro) were used to show how rough the atmosphere was. To evaluate the effectiveness of the optical system (telescope), the Strehl ratio (S) was computed. The compensation procedure for an AO syst
... Show MoreThe problem of steady, laminar, natural convective flow in an square enclosure with and without partitions is considered for Rayleigh number (103-106) and Prandtl number (0.7). Vertical walls were maintained isothermal at different temperatures while horizontal walls and the partitions were insulated. The length of partition was taken constant. The number of partitions were placed on horizontal surface in staggered arrangement from (1– 3) and ratio of partition thickness (H/L= 0.033, 0.083, 0.124). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on a program in Fortran 90 with the finite difference method is obtained. Representative results illustrating the effects of the thickn
... Show MoreIn this work, the annual behavior of critical frequency and electron density parameters of the ionosphere have been studied for the years (1989, 2001 and 2014) and (1986, 1996 and 2008) which represent the maximum and minimum of years in the solar cycles (22, 23 and 24) respectively. The annual behavior of (Ne, fo ) parameters have been investigated for different heights of Ionosphere layer (100 -1000) Km. The dataset was created both of critical frequency and electron density parameters by using the international reference ionosphere model (IRI-2016 model). This study showed result that during the maximum solar cycles the values of the (Ne) parameter change with