Motifs template is the input for many bioinformatics systems such codons finding, transcription, transaction, sequential pattern miner, and bioinformatics databases analysis. The size of motifs arranged from one base up to several Mega bases, therefore, the typing errors increase according to the size of motifs. In addition, when the structures motifs are submitted to bioinformatics systems, the specifications of motifs components are required, i.e. the simple motifs, gaps, and the lower bound and upper bound of each gap. The motifs can be of DNA, RNA, or Protein. In this research, a motif parser and visualization module is designed depending on a proposed a context free grammar, CFG, and colors human recognition system. GFC describes the motif structure to parse the motifs, detect, debug the errors, and analyze the motifs template to its components. Many experiments are accomplished using motifs templates of various sizes arranged from 10 Kbase to 10 Mbase, various numbers of gaps arranged from 15 gaps to 15000 gaps, and different numbers of errors arranged from 100 errors to 1820 errors. The proposed systems, in all these experiments, exhibited linear behavior in parsing phase and visualization phase that indicates its scalability to motifs template sizes.
Introduction: In recent decades, the endovascular treatment of cerebral arteriovenous malformations (AVMs) has advanced. However, it still carries risks of unanticipated complications. Coil migration is a reported complication of aneurysmal coiling procedures. Herein, we report a case of early intraprocedural coil migration during pressure cooker technique embolization of right thalamic AVM, discussing the management and potential explanations. The literature showed no report of coil migration after the pressure cooker technique in the form of coil-augmented Onyx injection technique (CAIT). Case description: An otherwise healthy 26-year-old female suddenly developed a severe headache with no loss of consciousness. Computed tomograp
... Show MoreIn this paper we present the first ever measured experimental electron momentum density of Cu2Sb at an intermediate resolution (0.6 a.u.) using 59.54 keV 241Am Compton spectrometer. The measurements are compared with the theoretical Compton profiles using density function theory (DFT) within a linear combination of an atomic orbitals (LCAO) method. In DFT calculation, Perdew-Burke-Ernzerhof (PBE) scheme is employed to treat correlation whereas exchange is included by following the Becke scheme. It is seen that various approximations within LCAO-DFT show relatively better agreement with the experimental Compton data. Ionic model calculations for a number of configurations (Cu+x/2)2(Sb-x) (0.0≤x≤2.0) are also performed utilizing free a
... Show MoreThe objective of the study to develop an amorphous solid dispersion for poorly soluble raltegravir by hot melt extrusion (HME) technique. A novel solubility improving agent plasdone s630 was utilized. The HME raltegravir was formulated into tablet by direct compression method. The prepared tablets were assessed for all pre and post-compression parameters. The drug- excipients interaction was examined by FTIR and DSC. All formulas displayed complying with pharmacopoeial measures. The study reveals that formula prepared by utilizing drug and plasdone S630 at 1:1.5 proportion and span 20 at concentration about 30mg (trail-6) has given highest dissolution rate than contrasted with various formulas of raltegravir.
Keywor
... Show MoreImage segmentation can be defined as a cutting or segmenting process of the digital image into many useful points which are called segmentation, that includes image elements contribute with certain attributes different form Pixel that constitute other parts. Two phases were followed in image processing by the researcher in this paper. At the beginning, pre-processing image on images was made before the segmentation process through statistical confidence intervals that can be used for estimate of unknown remarks suggested by Acho & Buenestado in 2018. Then, the second phase includes image segmentation process by using "Bernsen's Thresholding Technique" in the first phase. The researcher drew a conclusion that in case of utilizing
... Show MoreCopper, and its, alloys and composites (being the matrix), are broadly used in the electronic as well as bearing materials due to the excellent thermal and electrical conductivities it has.
In this study, powder metallurgy technique was used for the production of copper graphite composite with three volume perc ent of graphite. Processing parameters selected is (900) °C sintering temperature and (90) minutes holding time for samples that were heated in an inert atmosphere (argon gas). Wear test results showed a pronounced improvement in wear resistance as the percent of graphite increased which acts as solid lubricant (where wear rate was decreased by about 88% as compared with pure Cu). Microhardness and
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreThree-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia
... Show MoreThis study aims to develop a recommendation engine methodology to enhance the model’s effectiveness and efficiency. The proposed model is commonly used to assign or propose a limited number of developers with the required skills and expertise to address and resolve a bug report. Managing collections within bug repositories is the responsibility of software engineers in addressing specific defects. Identifying the optimal allocation of personnel to activities is challenging when dealing with software defects, which necessitates a substantial workforce of developers. Analyzing new scientific methodologies to enhance comprehension of the results is the purpose of this analysis. Additionally, developer priorities were discussed, especially th
... Show MoreAn immunological technique was investigated for the detection of human semen in forensic analysis.This technique included a preparation of anti-human seminal plasma antibodies, by immunizing rabbits with treated human semen. The human semen was treated with an acid to prevent cross reactivity with other human body fluids. The antibody produced was tested against different animal,s seminal fluid samples (dog, goat ,sheep, cow) and human body fluids( saliva, blood , vaginal fluid, ear wax and human semen). It was found that using this developed technique was only selectively responsed with human semen . The prepered kit was evaluated and tested in Forensic laboratory- Ministry of Health. Finally, results were obtained in a c
... Show MoreThe Adaptive Optics technique has been developed to obtain the correction of atmospheric seeing. The purpose of this study is to use the MATLAB program to investigate the performance of an AO system with the most recent AO simulation tools, Objected-Oriented Matlab Adaptive Optics (OOMAO). This was achieved by studying the variables that impact image quality correction, such as observation wavelength bands, atmospheric parameters, telescope parameters, deformable mirror parameters, wavefront sensor parameters, and noise parameters. The results presented a detailed analysis of the factors that influence the image correction process as well as the impact of the AO components on that process