In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and introduced. Optimal results showed that the optimum viscosity and thermal conductivity occurs at maximum temperature.
A new Schiff base o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on (HL) ,have been prepared and characterization.(HL) has been used as a chelating ligand to prepare a number of metal complexes VO(II) ,Cr(III) ,Mn(II),Fe(II),Hg(II) and UO2(II) .and mixed ligands complexes have been prepared between o-hydroxybenzylidene-1-phenyl-2,3-dimethyl-4-amino-3-pyrazolin-5-on and 8- hydroxy quinoline with VO(II),Zn(II),Cd(II), Hg(II) and UO2(II) the prepared complexes were isolated and characterized by (FT-IR)and (UV-Vis) spectroscopy. Elemental analysis (C.H.N) Chloride contents, Flame atomic absorption technique. in addition to magnetic susceptibility and conductivity measurement. Molar ratio measurement in solution gave comparabl
... Show MoreThis research deals with increasing the hardening and insulating the petroleum pipes against the conditions and erosion of different environments. So, basic material of epoxy has been mixed with Ceramic Nano Zirconia reinforcement material 35 nm with the percentages (0,1,2,3,4,5) %, whereas the paint basis of broken petroleum pipes was used to paint on it, then it was cut into dimensions (2 cm. × 2 cm.) and 0.3cm high. After the paint and percentages are completed, the samples were immersed into the paint. Then, the micro-hardness was checked according to Vickers method and thermal inspection of paint, which contained (Thermal conduction, thermal flux and Thermal diffusivity), the density of the painted samples was calculate
... Show More
The topological parameters of the metal-metal and metal-ligand bonding interactions in a trinuclear tetrahydrido cluster [(Cp*Co) (CpRu)2 (μ3-H) (μ-H)3]1 (Cp* = η5 -C5Me4Et), (Cp = η5 -C5Me5), was explored by using the Quantum Theory of Atoms-in-Molecules (QTAIM). The properties of bond critical points such as the bond delocalization indices δ (A, B), the electron density ρ(r), the local kinetic energy density G(r), the Laplacian of the electron density ∇2ρ(r), the local energy density H(r), the local potential energy density V(r) and ellipticity ε(r) are compared with data from earlier organometallic system studies. A comparison of the topological processes of different atom-atom interactions has become possible than
... Show MoreIn this study, dead and live anaerobic biomass was used in biosorption of Pb(II), Cr(III) and Cd(II) ions from a synthetic wastewater. The biosorption was investigated by batch adsorption experiments. It was found that, the biosorption capacities were significantly affected by biosorbent dosage. The process follows Langmuir isotherm (regression coefficient 0.995, 0.99 and 0.987 for Pb(II), Cr(III) and Cd(II) ions, respectively, onto dead anaerobic biomass) model with uniform distribution over the biomass surface. The experimental uptake capacity was 51.56, 29.2 and 28 mg/g for Pb(II), Cr(III) and Cd(II), respectively, onto dead anaerobic biomass, compared with 35, 13.6 and 11.8 mg/g for Pb(II), Cr(III) and Cd(II), respectively, onto live
... Show MoreSome coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral st
... Show MoreSome coordination complexes of Co(??), Ni(??), Cu(??), Cd(??) and Hg(??) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(??) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (??) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahedral structures
... Show MoreSome coordination complexes of Co(ІІ), Ni(ІІ), Cu(ІІ), Cd(ІІ) and Hg(ІІ) are reacted in ethanol with Schiff base ligand derived from of 2,4,6- trihydroxybenzophenone and 3-aminophenol using microwave irradiation and then reacted with metal salts in ethanol as a solvent in 1:2 ratio (metal: ligand). The ligand [H4L] is characterized by FTIR, UV-Vis, C.H.N, 1H-NMR,13C-NMR, and mass spectra. The metal complexes are characterized by atomic absorption, infrared spectra, electronic spectra, molar conductance, (C.H.N for Ni(ІІ) complex) and magnetic moment measurements. These measurements indicate that the ligand coordinates with metal (ІІ) ion in a tridentate manner through the nitrogen and oxygen atoms of the ligand, octahed
... Show MoreA new Schiff base ligand Bis-1,4-di[N-3-(2-hydroxy-1-amino)- acetophenonylidene] benzylidene [L] and its complexes with (Mn(II) ,Co(II) ,Ni(II and Cu(II)) were synthesized . The ligand was prepared in two steps. In the first step a solution of (terphthalaldehyde) in methanol reacts under reflux with (p-aminoacetophenone) to give an intermediate compound [1-[3-({4-[(3-Acetyl-phenylimino)-methyl]-benzylidene}-amino)-phenyl]- ethanone which reacts in the second step with (2-Amino-phenol) giving the mentioned ligand. The complexes were synthesized by addition the corresponding metal salt solution to the solution of the ligand in methanol under reflux in (1:1) metal to ligand ratio. On the basis of, molar conductance, I.R., UV-Vis, HPLC, chlorid
... Show More