Nanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same particle concentration; while ZrO2 demonstrated a better efficiency by altering strongly oil-wet (water contact angle θ=152°) calcite substrates into a strongly water-wet (θ=44°) state, NiO changed wettability to an intermediate-wet condition (θ=86°) at 0.05 wt% nanoparticle concentration. We conclude that ZrO2 is very efficient in terms of inducing strong water-wettability; and ZrO2 based nanofluids have a high potential as EOR agents.
Pulsed laser ablation in liquid (PLAL) has become an increasingly important technique for metals production and metal oxides nanoparticles (NPs) and others. This technique has its many advantages compared with other conventional techniques (physical and chemical). This work was devoted for production of zirconia (ZrO2) nanoparticles via PLAL technique from a solid zirconium target immersed in a wet environment in order to study the effect of this environment on the optical properties and structure of ZrO2 nanoparticles. The solutions which used for this purpose is distilled water (D.W). The produces NPs were characterized by mean of many tests such as UV-visible (UV-Vis.), transmission electron microscope (TEM) and Z-Potential. The UV-Vis.
... Show MorePhase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha
... Show MoreIn many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show MoreThe current study deals with host-guest complex formation between cucurbit [7] urils as host and lansoprazole as guesti using PM3 (semi empirical molecules orbital calculations) also DFT calculations. In this complex, the formation of hydrogen bonding may be occurred through portal oxygen atoms(O2) of cucurbit [7] urils and amine groups (NH 2 )of the drug. The energies of HOMO and LUMO orbital’s have been computed for the host guest complex and its components. The result of the stabilization energy explained a complex formation.
The aim of this study is to investigate the sedimentation environments and diagenetic processes of the Ibrahim Formation (Oligocene-early Miocene) in Zurbatiya, eastern Iraq. The Ibrahim Formation is comprised mostly of clayey micrite and skeletal grains composed of planktonic foraminifera, calcispheres, radiolaria, and benthic foraminifera. Glauconite and pyrite were documented in some restricted zones of this formation; they reflect quiet and reducing conditions. Radiolaria were identified in Late-Oligocene which was not known previously at this age regionally in carbonate formations of the Arabian Plate (AP). Mudstone, wackestone, and planktonic foraminiferal wackepackstone are the main microfacies that are affected by dissolutio
... Show MoreIn present study 74 specimens of urine were collected from patients suffering from urinary tract infections.Fifty (67.56%) isolates were identified as Escherichia coli. 78% of isolates were identified as extendedspectrum beta lactamases (ESBL) producer. Antibiotic susceptibility t est was done and ceftazidime wasselected to complete this study by implying stress at sub-MIC on isolate harbor high number of resistancegenes (N11) and compared with sensitive isolate (S). Only four β-lactamase coding genes were detected;blaTEM, blaPER, blaVIM and blaCTX-M-2 and N11 had blaTEM, blaPER, and blaVIM. It was found that the resistantisolate did not form biofilm when compared with the sensitive one, which formed moderate biofilm. Inaddition, ceftazidi
... Show MoreIn this paper, we studied the spark corona discharge in tap and distillited waters. The results show the shape of cone that generated on the tip of capillary tube is different with conductivity of liquids. The blue glow appears at the end of capillary tube and the drop extends into a cone. In addition, the conducitivity is affected on the relationship between the appearance of the blue glow discharge with the applied voltage. The size of the cone decreases with an increase in applied voltage. The cone diameter at the base of capillary tube oscillates with period approximately 1 Sec. this oscillates in the cone diameters is due to the change distance between the liquid electrode and the surface of liquid. The intensity of spark corona dis
... Show MoreRock failure during drilling is an important problem to be solved in petroleum technology. one of the most causes of rock failure is shale chemical interaction with drilling fluids. This interaction is changing the shale strength as well as its pore pressure relatively near the wellbore wall. In several oilfields in southern Iraq, drilling through the Tanuma formation is known as the most challenging operation due to its unstable behavior. Understanding the chemical reactions between shale and drilling fluid is determined by examining the features of shale and its behavior with drilling mud. Chemical interactions must be mitigated by the selection of suitable drilling mud with effective chemical additives. This study is describing t
... Show More