Nanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same particle concentration; while ZrO2 demonstrated a better efficiency by altering strongly oil-wet (water contact angle θ=152°) calcite substrates into a strongly water-wet (θ=44°) state, NiO changed wettability to an intermediate-wet condition (θ=86°) at 0.05 wt% nanoparticle concentration. We conclude that ZrO2 is very efficient in terms of inducing strong water-wettability; and ZrO2 based nanofluids have a high potential as EOR agents.
In this work, Titanium oxide thin films doped with different concentration of CuO (0,5,10, 15,20) %wt were prepared by pulse laser deposition(PLD) technique on glass substrates at room temperature with constant deposition parameter such as : pulse (Nd:YAG), laser with λ=1064 nm, constant energy 800 mJ , repetition rate 6 Hz and No. of pulse (500). The structure , optical and electrical properties were studied . The results of X-ray diffraction( XRD) confirmed that the film grown by this technique have good crystalline tetragonal mixed anatase and rutile phase structure, The preferred orientation was along (110) direction for Rutile phase. The optical properties of the films were studied by UV-VIS spectrum in the range of (360-1100)
... Show MoreIn this paper, quantified study of the biofilm formed by Klebsiella pneumoniae isolated from urine specimen of patient suffering from acute urinary tract infection (UTI) on catheter, stainless-steel and glass coupon surfaces, as well as determine the relationship between time contact and biofilm progression using crystal-violet binding assay based on the values of optical density at 620nm of the crystal violet stain which bonded total biofilm biomass by resolubizing with 99.9% ethanol at the specific interval times. The result showed biofilm formed on three tested surfaces but in different degrees. According to obtained data, the catheter coupons presents a higher capability to attract bacteria cell and biofilm formation followed by glas
... Show MoreThe seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The horizon was calibrated and defined on the seismic section with well logs data (well tops, check shot, sonic logs, and density logs) in the interp
... Show MoreFive isolates (25%) of Klebsiella pneumoniae were isolated from urine samples. In addition also isolated bacteria were (10) 50% Escherichia coli, while (3)15% Proteus spp., (2)10% Pseudomonas aeruginosa. The ethanolic extract of Cinnamomum zeylanicum bark were tested against Klebsiella pneumoniae by using the well agar diffusion test, the alcoholic bark extract from (200 -12.5) mg/ml possessed antimicrobial activity against tested microorganism. At 200 mg/ml, and 100 mg/ml concentrations was diameter of inhibition zone rang from (18-26mm), (14-16mm) respectively, and these results compared to antibiotics Norfloxacin(10µg) inhibition zone (24-30mm), and Cefotaxim (10 µg) (26-27mm) as
... Show MorePrediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pr
... Show MorePrediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur
... Show MoreThe semiconductor ZnO is one of II – VI compound group, it is prepare as thin films by using chemical spray pyrolysis technique; the films are deposited onto glass substrate at 450 °C by using aqueous zinc chloride as a spray solution of molar concentration 0.1 M/L. Sample of the prepared film is irradiating by Gamma ray using CS 137, other sample is annealed at 550°C. The structure of the irradiated and annealed films are analyzed with X-ray diffraction, the results show that the films are polycrystalline in nature with preferred (002) orientation. The general morphology of ZnO films are imaged by using the Atomic Force Microscope (AFM), it constructed from nanostructure with dimensions in order of 77 nm.
The optical properties o
This work deals with the effect of adding aluminum nanoparticles on the mechanical properties, micro-hardness and porosity of memory-shape alloys (Cu-Al-Ni). These alloys have wide applications in various industrial fields such as (high damping compounds and self-lubricating applications). The samples are manufactured using the powder metallurgy method, which involved pressing in only one direction and sintered in a furnace surrounded by an inert gas. Four percentages (0%, 5%, 10%, and 15%) of aluminum nanoparticles were fabricated, which depended on the weight of aluminum powder (13%) in the sample under study. To find out which phase is responsible for the reliability of the formation of this type of alloy and its porosity, X-ray diffr
... Show More