During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
The research deals with the subject of «ways to face rumors in the site of social networking Facebook», a research based on a doctoral thesis, as the research dealt with rumors in the most dangerous type of new media, which sites of social communication with the global community as spreading rumors of all kinds and afflicts everyone who has eyes on him Of the audience of these sites, and aims to identify the rumors on Facebook because it is one of the most popular sites in the world and the strategy of combating the rumors published by Facebook users in their personal pages and groups that organize them, as well as identify methods and methods that can be During which the face of the rumors in the said site and eliminate them t
... Show MoreThe triggering effect for the face pumping of Nd:YVO4 disc medium of 4×5×0.5 mm was investigated using bulk diode laser at different resonator cavity length in pulse mode and at repetition rate of 1.3kHz. The maximum emitted peak power was found to be 100, 82, and 66 mW for resonator lengths of 10, 13.5, and 17.5 cm respectively, while the threshold pumping power was found to be 41mW. The maximum emitted peak power obtained was 300 mW when using external triggering and 10cm length, with repetition of 3Hz.
The work in this paper involves the planning, design and implementation of a mobile learning system called Nahrain Mobile Learning System (NMLS). This system provides complete teaching resources, which can be accessed by the students, instructors and administrators through the mobile phones. It presents a viable alternative to Electronic learning. It focuses on the mobility and flexibility of the learning practice, and emphasizes the interaction between the learner and learning content. System users are categorized into three categories: administrators, instructors and students. Different learning activities can be carried out throughout the system, offering necessary communication tools to allow the users to communicate with each other
... Show MoreActive Learning And Creative Thinking
Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
This research is concerned to investigate the behavior of reinforced concrete (RC) deep beams strengthened with carbon fiber reinforced polymer (CFRP) strips. The experimental part of this research is carried out by testing seven RC deep beams having the same dimensions and steel reinforcement which have been divided into two groups according to the strengthening schemes. Group one was consisted of three deep beams strengthened with vertical U-wrapped CFRP strips. While, Group two was consisted of three deep beams strengthened with inclined CFRP strips oriented by 45o with the longitudinal axis of the beam. The remaining beam is kept unstrengthening as a reference beam. For each group, the variable considered
... Show MoreMicro metal forming has an application potential in different industrial fields. Flexible tool-assisted sheet metal forming at micro scale is among the forming techniques that have increasingly attracted wide attention of researchers. This forming process is a suitable technique for producing micro components because of its inexpensive process, high quality products and relatively high production rate. This study presents a novel micro deep drawing technique through using floating ring as an assistant die with flexible pad as a main die. The floating ring designed with specified geometry is located between the process workpiece and the rubber pad. The function of the floating ring in this work is to produce SS304 micro cups with profile
... Show More