During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
Twitter data analysis is an emerging field of research that utilizes data collected from Twitter to address many issues such as disaster response, sentiment analysis, and demographic studies. The success of data analysis relies on collecting accurate and representative data of the studied group or phenomena to get the best results. Various twitter analysis applications rely on collecting the locations of the users sending the tweets, but this information is not always available. There are several attempts at estimating location based aspects of a tweet. However, there is a lack of attempts on investigating the data collection methods that are focused on location. In this paper, we investigate the two methods for obtaining location-based dat
... Show MoreThis paper explores a fuzzy-logic based speed controller of an interior permanent magnet synchronous motor (IPMSM) drive based on vector control. PI controllers were mostly used in a speed control loop based field oriented control of an IPMSM. The fundamentals of fuzzy logic algorithms as related to drive control applications are illustrated. A complete comparison between two tuning algorithms of the classical PI controller and the fuzzy PI controller is explained. A simplified fuzzy logic controller (FLC) for the IPMSM drive has been found to maintain high performance standards with a much simpler and less computation implementation. The Matlab simulink results have been given for different mechanical operating conditions. The simulated
... Show MoreThe aim of advancements in technologies is to increase scientific development and get the overall human satisfaction and comfortability. One of the active research area in recent years that addresses the above mentioned issues, is the integration of radio frequency identification (RFID) technology into network-based systems. Even though, RFID is considered as a promising technology, it has some bleeding points. This paper identifies seven intertwined deficiencies, namely: remote setting, scalability, power saving, remote and concurrent tracking, reusability, automation, and continuity in work. This paper proposes the construction of a general purpose infrastructure for RFID-based applications (IRFID) to tackle these deficiencies. Finally
... Show MoreThe problem of frequency estimation of a single sinusoid observed in colored noise is addressed. Our estimator is based on the operation of the sinusoidal digital phase-locked loop (SDPLL) which carries the frequency information in its phase error after the noisy sinusoid has been acquired by the SDPLL. We show by computer simulations that this frequency estimator beats the Cramer-Rao bound (CRB) on the frequency error variance for moderate and high SNRs when the colored noise has a general low-pass filtered (LPF) characteristic, thereby outperforming, in terms of frequency error variance, several existing techniques some of which are, in addition, computationally demanding. Moreover, the present approach generalizes on existing work tha
... Show MoreA few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
Its well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
There are many studies dealt with handoff management in mobile communication systems and some of these studies presented handoff schemes to manage this important process in cellular network. All previous schemes used relative signal strength (RSS) measurements. In this work, a new proposed handoff scheme had been presented depending not only on the RSS measurements but also used the threshold distance and neighboring BSS power margins in order to improve the handoff management process. We submitted here a threshold RSS as a condition to make a handoff when a mobile station moves from one cell to another this at first, then we submitted also a specified margin between the current received signal and the ongoing BS's received signal must be s
... Show More