Preferred Language
Articles
/
j4Y5M4YBIXToZYALx35A
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).

Crossref
Publication Date
Wed Jul 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A new Technique For Solving Fractional Nonlinear Equations By Sumudu Transform and Adomian Decomposition Method
...Show More Authors

A novel technique Sumudu transform Adomian decomposition method (STADM), is employed to handle some kinds of nonlinear time-fractional equations. We demonstrate that this method finds the solution without discretization or restrictive assumptions. This method is efficient, simple to implement, and produces good results. The fractional derivative is described in the Caputo sense. The solutions are obtained using STADM, and the results show that the suggested technique is valid and applicable and provides a more refined convergent series solution. The MATLAB software carried out all the computations and graphics. Moreover, a graphical representation was made for the solution of some examples. For integer and fractional order problems, solu

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Nonlinear Analysis And Applications
Rock facies classification and its effect on the estimation of original oil in place based on petrophysical properties data
...Show More Authors

The most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri

... Show More
View Publication Preview PDF
Publication Date
Wed Feb 08 2023
Journal Name
Iraqi Journal Of Science
Subsurface 3D Prediction Porosity Model from Converted Seismic and Well Data Using Model Based Inversion Technique
...Show More Authors

Seismic inversion technique is applied to 3D seismic data to predict porosity property for carbonate Yamama Formation (Early Cretaceous) in an area located in southern Iraq. A workflow is designed to guide the manual procedure of inversion process. The inversion use a Model Based Inversion technique to convert 3D seismic data into 3D acoustic impedance depending on low frequency model and well data is the first step in the inversion with statistical control for each inversion stage. Then, training the 3D acoustic impedance volume, seismic data and porosity wells data with multi attribute transforms to find the best statistical attribute that is suitable to invert the point direct measurement of porosity from well to 3D porosity distribut

... Show More
View Publication Preview PDF
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
A Survey of Human Face Mites Demodex (Acari, Demodicidae) in Patients with Dermatological Symptoms in Baghdad, Iraq
...Show More Authors

Demodex spp. mites are external obligate parasites; they are transmitted between hosts through direct contact, and may induce several dermatological symptoms when found in large numbers. However, these symptoms may be similar to other commonly known diseases; this often leads dermatologists to neglect the pathogenic role of these mites. Therefore, a better diagnosis is recommended in order to avoid mistreatment. The aim of this study was to investigate the correlation between Demodex mites and dermatological diseases. Infestation rates in patients suffering from acne, rosacea, folliculitis, and psoriasis were compared with asymptomatic patients, along with the mites’ relation to gender, age, personal hygiene, tim

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Fri Sep 23 2022
Journal Name
Specialusis Ugdymas
Intrusion Detection System Techniques A Review
...Show More Authors

With the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.

Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Shared Congestion Detection: A Comparative Study
...Show More Authors

Most Internet-tomography problems such as shared congestion detection depend on network measurements. Usually, such measurements are carried out in multiple locations inside the network and relied on local clocks. These clocks usually skewed with time making these measurements unsynchronized and thereby degrading the performance of most techniques. Recently, shared congestion detection has become an important issue in many computer networked applications such as multimedia streaming and
peer-to-peer file sharing. One of the most powerful techniques that employed in literature is based on Discrete Wavelet Transform (DWT) with cross-correlation operation to determine the state of the congestion. Wavelet transform is used as a de-noisin

... Show More
View Publication Preview PDF
Publication Date
Sat May 08 2021
Journal Name
Iraqi Journal Of Science
Automated Deception Detection Systems, a Review
...Show More Authors

Humans use deception daily since it can significantly affect their life and provide a getaway solution for any undesired situation. Deception is either related to low-stakes (e.g. innocuous) or high-stakes (e.g. with harmful situations). Deception investigation importance has increased, and it became a critical issue over the years with the increase of security levels around the globe. Technology has made remarkable achievements in many human life fields, including deception detection. Automated deception detection systems (DDSs) are widely used in different fields, especially for security purposes. The DDS is comprised of multiple stages, each of which should be built/trained to perform intelligently so that the whole system can give th

... Show More
View Publication Preview PDF
Crossref (2)
Scopus Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
FACE IDENTIFICATION USING BACK-PROPAGATION ADAPTIVE MULTIWAVENET
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Face Identification Using Back-Propagation Adaptive Multiwavenet
...Show More Authors

Face Identification is an important research topic in the field of computer vision and pattern recognition and has become a very active research area in recent decades. Recently multiwavelet-based neural networks (multiwavenets) have been used for function approximation and recognition, but to our best knowledge it has not been used for face Identification. This paper presents a novel approach for the Identification of human faces using Back-Propagation Adaptive Multiwavenet. The proposed multiwavenet has a structure similar to a multilayer perceptron (MLP) neural network with three layers, but the activation function of hidden layer is replaced with multiscaling functions. In experiments performed on the ORL face database it achieved a

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Civil And Environmental Engineering
Developing A Mathematical Model for Planning Repetitive Construction Projects By Using Support Vector Machine Technique
...Show More Authors
Abstract<p>Each project management system aims to complete the project within its identified objectives: budget, time, and quality. It is achieving the project within the defined deadline that required careful scheduling, that be attained early. Due to the nature of unique repetitive construction projects, time contingency and project uncertainty are necessary for accurate scheduling. It should be integrated and flexible to accommodate the changes without adversely affecting the construction project’s total completion time. Repetitive planning and scheduling methods are more effective and essential. However, they need continuous development because of the evolution of execution methods, essent</p> ... Show More
View Publication
Crossref (3)
Clarivate Crossref