During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieved lower computational complexity and number of layers, while being more reliable compared with other algorithms applied to recognize face masks. The findings reveal that the model's validation accuracy reaches 97.55% to 98.43% at different learning rates and different values of features vector in the dense layer, which represents a neural network layer that is connected deeply of the CNN proposed model training. Finally, the suggested model enhances recognition performance parameters such as precision, recall, and area under the curve (AUC).
The current research aims at: - Identifying the role played by the leadership in empowerment and organizational learning abilities and their reflection on the knowledge capital, and the extent to which these concepts can be applied effectively at Wasit University. The problem of research .... In a series of questions: The most important is that the dimensions leadership empowerment and distance learning organizational capacity correlation relationship and impact and significant statistical significance with the capital knowledge.
To understand the nature of the relationship and the impact between the variables, leadership was adopted by empowerment as the fir
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show MoreIn this paper will be applied to a probability model of inventories periods of multiple stores of raw materials used in the cement industry, cement factory in Samawah and basic materials are limestone, soil normal, iron soil, fuel oil and gypsum. It was built of this model after the test and determine the distribution of demand during the supply period (waiting period) for each subject and independently of the rest of the material as it is not affected by any of the materials above interrelated in the process of supply, this test has been using the Statistical Package of (SPSS) and then was determining the amount of request optimum seeking in each batch and each substance known volume of economic optimization of
... Show MoreThe aim of this research is to find out the influence of Daniel's model on the skills of the twenty-first century among the students of the scientific-fifth grade at the secondary and preparatory government morning schools for the academic year 2022- 2023. Two groups were chosen out of five groups for the fifth-scientific grade, one of which represents the experimental group that is taught by the Daniel model, and the other is the control group that is taught in the traditional method. The equivalence of the two research groups was verified with a set of variables. As for the research tool, a scale was developed by the researchers for the skills of the twenty-first century, in which they adopted the framework of the Partnership Organizat
... Show MoreIn this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show MoreIn this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).
The aim of this paper is to describe an epidemic model when two SI-Type of diseases are transmitted vertically as well as horizontally through one population. The population contains two subclasses: susceptible and infectious, while the infectious are divided into three subgroups: Those infected by AIDS disease, HCV disease, and by both diseases. A nonlinear mathematical model for AIDS and HCV diseases is Suggested and analyzed. Both local and global stability for each feasible equilibrium point are determined theoretically by using the stability theory of differential equations, Routh-Hurwitz and Gershgorin theorem. Moreover, the numerical simulation was carried out on the model parameters in order to determine their impact on the disease
... Show MoreSilymarin, a flavolignans from seeds of ‘milk thistle’ “Silybum marianum†has been widely used from ancient times because of its excellent hepatoprotective action. It has been used clinically to treat liver disorders including acute and chronic viral hepatitis, toxin/drug-induced hepatitis and cirrhosis and alcoholic liver disease. The efficacy and dose-response effect of silymarin (125, 250 and 500 mg/kg) were assessed using egg albumin-induced paw edema in rats as a model of acute inflammation. In this model, 56 rats were used and allocated into 7 subgroups each containing 8 rats. All treatments were given intraperitonealy 30 minutes before induction of inflammation by egg albumin and then the increase
... Show MorePhysical model tests were simulated non-aqueous phase liquid (NAPL) spill in two-dimensional
domain above the water table. Four laboratory experiments were carried out in the sand-filled
tank. The evolution of the plume was observed through the transparent side of this tank and the
contaminant front was traced at appropriate intervals. The materials used in these experiments
were Al-Najaf sand as a porous medium and kerosene as contaminant.
The results of the experiments showed that after kerosene spreading comes to a halt (ceased) in
the homogeneous sand, the bulk of this contaminant is contained within a pancake-shaped lens
situated on top of the capillary fringe.
In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.